Overcoming the Environmental Challenges Facing Aviation

To: 32nd Annual Aviation Noise and Emissions Symposium

By: Dr. James I. Hileman
Chief Scientific and Technical Advisor for Environment and Energy
Federal Aviation Administration
Office of Environment and Energy

Date: February 26, 2018
FAA Organizational Structure

Environment and Energy R&D Portfolio
Economic Benefits of Aviation

5.1% of U.S. GDP

10.6 Million U.S. jobs

$1.6 Trillion in U.S. economic activity annually

$59.9 Billion of U.S. Trade Balance (exports-imports)

SOURCE: FAA Air Traffic Organization

Aviation equipment (aircraft, spacecraft, and related equipment) is largest export sector in U.S. economy accounting for over 8% of total exports.

SOURCE: U.S. International Trade Commission
Benefits to Regional and Local Economies

• Aviation is a critical link for people, goods and services coming in and out of communities

• Access to aviation can be a vital reason that some companies use when choosing to locate offices, manufacturing and/or distribution facilities; and

• Passenger and cargo service can be crucial for community access and time-critical delivery services ranging from mail and packages to pharmaceuticals, biotech devices and computer components.
Environmental Impacts of Aviation

- **CO₂:** 71%
- **Water:** 28%
- CO, HC, NOₓ, SOₓ, Primary PM₂.₅: < 1%

Atmospheric Chemistry and Physics

- **Primary PM₂.₅**
- **Secondary PM₂.₅**
- SOₓ
- NOₓ
- UHC
- CO
- Ozone
- Soot
- CO
- H₂O
- CH₄

Global Climate Change

- Cooling Effects
- Warming Effects

Combustion Emissions

Emissions from Fuel Production

Contrails & Cirrus Clouds

Land and Water Usage

Aircraft Noise

Population Exposure and Health Impacts
Environmental Protection that Allows Sustained Aviation Growth

ENVIRONMENT AND ENERGY GOALS

NOISE
Reduce the number of people exposed to significant noise around U.S. airports

AIR QUALITY
Reduce significant air quality impacts attributable to aviation

ENERGY
Achieve net fuel burn reduction by 2020 relative to a 2005 baseline and deploy sustainable aviation fuels.
Environmental & Energy Strategy

FAA VISION
Reach the next level of safety, efficiency, environmental responsibility and global leadership

GOALS
• Noise
• Air Quality
• Energy

PLAN
• Environment and energy policy statement
• U.S. Action Plan
• Research roadmaps

ADVANCE SCIENCE AND INTEGRATED MODELING
Source characterization → Propagation and dispersion
Health and welfare impacts → Aviation Environmental Tool Suite

IMPROVE
• Adapt roadmaps
• Fill research pipeline

EVALUATE
• Progress toward goals
• Mitigation opportunities

IMPLEMENT
- Technology
- Alternative Fuels
- Operations
- Policy

Notes:
3. Environment and Energy Website: http://www.faa.gov/go/environment
Addressing the Aircraft Noise Challenge

• **Understanding Impact of Noise**
 – Improving modeling capabilities
 – Examining relationship between noise and annoyance, sleep, cardiovascular health and children’s learning.
 – Evaluating current aircraft, helicopters, emerging civil supersonic aircraft and commercial space vehicles, and drones.

• **Outreach**
 – Increase public understanding
 – Community engagement

• **Mitigation**
 – Land use planning and related measures
 – Vehicle operations
 – Airframe and engine technology
 – Aircraft architecture
Multiple Strategies for Aviation Noise
(as presented to Oct 2017 ACI-AAAE Noise Symposium)

• Reduce noise at the source
• Maintain or update noise standards
• Advance Performance-Based Navigation (PBN)
• Noise Compatibility Planning (Part 150)
• Enhanced community involvement (e.g., community roundtables)
• Noise-based access restrictions (Part 161)
• Noise mitigation
Addressing Aircraft Emissions

- **Understanding Impacts**
 - Particulate Matter (PM) measurements and modeling
 - Improving air quality and climate modeling capabilities
 - Evaluating current aircraft, commercial supersonic aircraft, unmanned aerial systems, and commercial space vehicles

- **Mitigation**
 - Vehicle operations
 - Alternative fuels
 - Airframe and engine technology
 - Aircraft architecture
 - Engine standard (CAEP PM standard)
 - Policy measures (CORSIA)
Aviation Sustainability Center (ASCENT)

Lead Universities:
- Washington State University (WSU)
- Massachusetts Institute of Technology (MIT)

Core Universities:
- Boston University (BU)
- Georgia Institute of Technology (Ga Tech)
- Missouri University of Science and Technology (MS&T);
- Oregon State University (OSU)
- Pennsylvania State University (PSU)
- Purdue University (PU)
- Stanford University (SU)
- University of Dayton (UD)
- University of Hawaii (UH)
- University of Illinois at Urbana-Champaign (UIUC)
- University of North Carolina at Chapel Hill (UNC)
- University of Pennsylvania (UPenn)
- University of Tennessee (UT)
- University of Washington (UW)

In operation since Sept 2013
- Continuing work of PARTNER COE
- $10+ million annual funding
- 50+ ongoing research projects
- 110+ publications per year
- 110+ students involved
- 70 industry research partners

ASCENT Website: http://ascent.aero
Improved Scientific Knowledge for Solution Development

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Key Research Questions</th>
<th>Research Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>How do we define significance in regards to aircraft noise?</td>
<td>ASCENT COE</td>
</tr>
<tr>
<td></td>
<td>What are the public health and welfare impacts of aircraft noise?</td>
<td>Tech Center</td>
</tr>
<tr>
<td></td>
<td>How do we certify “low-boom” supersonic aircraft?</td>
<td>Volpe Center</td>
</tr>
<tr>
<td>Air Quality</td>
<td>How do we define significance in regards to aircraft emissions that degrade air quality?</td>
<td>ASCENT COE</td>
</tr>
<tr>
<td>Energy</td>
<td>How do we characterize annual variations in system-wide fuel efficiency?</td>
<td>ASCENT COE</td>
</tr>
<tr>
<td></td>
<td>How do we define sustainability of alternative jet fuels?</td>
<td>CAAFI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLEEN Program</td>
</tr>
<tr>
<td>Climate</td>
<td>What is the incremental impact of non-CO2 aircraft emissions on global and regional climate?</td>
<td>ASCENT COE</td>
</tr>
</tbody>
</table>
Aviation Environmental Tool Suite

Modeling range of solutions and their consequences on fuel use, noise and emissions (basket of measures for CO$_2$ and balanced approach for noise)

Policy and Scenarios
Including outputs from other tools and analyses as appropriate

Rapid Fleet-Wide Environmental Assessment

Alternative Fuels
Source and Composition

Aircraft Design
Existing Aircraft, New Aircraft, and/or Generic Fleet

Operations

Fleet Evolution, Economics Estimation & Evaluation (FOM, APMT-E, FLEET-BUILDER)

Cost Benefit Analysis

Aviation Environmental Design Tool (AEDT)

Single Flight/Airport
Regional
Global Studies

Integrated Noise, Emissions, and Fuel Burn Analyses

Aviation Environmental Impacts Analysis (APMT-I)

Emissions & Noise

Climate Impacts
Air Quality Impacts
Noise Impacts

Monetized Impacts

Emissions, Noise, & Fuel Burn

Collected Costs
Science and Analysis to Support Decision-Making

- Aviation environmental policies impact noise, climate and air quality. Using the aviation environmental tool suite to assess the impacts of noise and emissions for policy assessment.

- Tool suite informing decision making:
 - CAEP/11 PM Std (2019)
 - CAEP/10 CO$_2$ Std (2016)
 - CAEP/9 Noise Std (2013)
 - CAEP/8 NOx Std (2010)

- FAA uses cost/benefit analysis elements to supplement cost-effectiveness analysis in CAEP

- Tool suite provided analytical support to CORSIA development
- Developing capabilities to support NextGen business case evaluation

Additional information on APMT-Impacts and its use is available at: http://partner.mit.edu/projects/valuation-and-trade-offs-policy-options
FAA Activities

• Testing
 ▪ Support Certification/Qualification testing
 ▪ Improve Certification/Qualification process
 ▪ Emissions measurements

• Analysis
 ▪ Environmental sustainability
 ▪ Techno-economic analysis
 ▪ Future scenarios

• Coordination
 ▪ Interagency
 ▪ Public-Private
 ▪ State & Regional
 ▪ International

CAAFI: http://caafi.org
CLEEN Program: http://www.faa.gov/go/cleen/
ASCENT: http://ascent.aero
Commercial Aviation Alternative Fuels Initiative

- Communicate the Value Proposition of SAJF
- Enhance the Fuel Qualification Approach
- Implement Frameworks & Share Best Practices
- Develop the U.S. SAJF Supply by Aligning Efforts to Enable Commercial Deployment

CAAFI Administrative Leadership Team:
- Steve Csonka, CAAFI Executive Director
- Chris Tindal, CAAFI Assistant Director
- Kristin Lewis, Volpe
- Peter Herzig, Volpe
- Nate Brown, FAA
- Rich Altman, CAAFI Executive Director Emeritus

CAAFI Team Leads:
- C/Q: M. Rumizen, C/Q
- Sustainability: J. Hileman & N. Young,
- Business: J. Heimlich
- R&D : M. Lakeman, S Kramer, & G. Andac

CAAFI Steering Group: AIA, ACI-NA, A4A, GE, Boeing, P&W, ASCENT, DOE, USDA

CAAFI Website: http://caafi.org
Where We Stand Today

- Commercial flights on AJF are taking place
- 1.5 million gallons in 2017 from two commercial producers, many commercial users

U.S. Alternative Jet Fuel Procurements

Notes:
1. Includes procurements of fuel by U.S. government, U.S. airlines, manufacturers, and foreign carriers delivered to U.S. airports
Continuous Lower Energy, Emissions & Noise (CLEEN)

- FAA led public-private partnership with 50-50 cost share from industry
- Reducing fuel burn, emissions and noise via aircraft and engine technologies and alternative jet fuels
- Conducting ground and/or flight test demonstrations to accelerate maturation of certifiable aircraft and engine technologies

For More Information, please visit CLEEN Fact Sheet and Website:
- http://www.faa.gov/go/cleen

<table>
<thead>
<tr>
<th>Technology</th>
<th>CLEEN I</th>
<th>CLEEN II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Frame</td>
<td>2010-2015</td>
<td>2016-2020</td>
</tr>
<tr>
<td>FAA Budget</td>
<td>~$125M</td>
<td>~$100M</td>
</tr>
<tr>
<td>Noise Reduction Goal</td>
<td>32 dB cumulative noise reduction</td>
<td>32 dB cumulative noise reduction</td>
</tr>
<tr>
<td>NO$_X$ Emissions Reduction Goal</td>
<td>60% landing/take-off NO$_X$ emissions</td>
<td>75% landing/take-off NO$_X$ emissions</td>
</tr>
<tr>
<td>Fuel Burn Goal</td>
<td>33% reduction</td>
<td>40% reduction</td>
</tr>
<tr>
<td>Entry into Service</td>
<td>2018</td>
<td>2026</td>
</tr>
</tbody>
</table>
CLEEN Phase I Overview

CLEEN Phase 1 Program Details:
• Reducing environmental impacts via aircraft technology and alternative jet fuels
• Five year effort to accelerate technology maturation (2010-2015)
• 50% cost share; total FAA budget: ~$125M

CLEEN Phase 1 Program Goals:
• 32 dB cumulative noise reduction
• 60% landing/take-off NOx emissions reduction
• 33% fuel burn reduction

Conducting ground and/or flight test demonstrations of certifiable aircraft technologies with entry into service by 2018

Based on 5-year cost share agreements with industry

Awardees:

Boeing
Ceramic Matrix Composite Nozzle
Adaptive Trailing Edge

Honeywell
New coatings, higher temperature impeller, advanced seals and improved turbine cooling.

Pratt & Whitney
Ultra-high Bypass Ratio Geared Turbofan

Rolls-Royce
Ceramic Matrix Composite Blade Tracks and Dual-Walled Turbine Airfoils

General Electric
Flight Management System / Air Traffic Integration
Flight Management System / Engine Integration
Twin Annular Premixing Swirler (TAPS) II Low NOx Combustor
Open Rotor Engine

For more information: http://www.faa.gov/go/cleen
CLEEN Phase I Benefits: Demonstrated technologies that reduce noise, emissions and fuel burn

Boeing

Adaptive Trailing Edge
~ 2% fuel burn reduction
~ 1.7 EPNdB cum in some single and twin aisles

CMC Acoustic Nozzle
~ 1% fuel burn reduction
~ 2.3 EPNdB cumulative noise margin to Stage 4

Honeywell

Fuel Burn Technologies
CLEEN technologies contributed to ~5% fuel burn reduction as part of a 15.7% fuel burn reduction engine package

Pratt & Whitney

Geared Turbofan Technologies
CLEEN techs expand design space for engine with ~20% fuel burn reduction, > 20 EPNdB cumulative noise margin to Stage 4

General Electric

TAPS II Combustor *(entered fleet in 2016)*
> 60% margin to CAEP/6 LTO NOx was achieved

FMS/Engine and FMS/ATM Integration *(Entered into service - LEAP engine on B737MAX, Airbus A320 Neo aircraft, and GE9X engine on 777X)*
0.7-1.0% fuel burn reduction

Open Rotor
~ 26% reduction in fuel burn (re: 737-800)
~ 15-17 EPNdB cumulative noise margin to Stage 4

Rolls Royce

Ceramic Matrix Composite Turbine Blade Track
CMC blade tracks offer > 50% reduction in cooling flow and component weight.

Rolls-Royce – Dual Wall Turbine Airfoil
Dual Wall turbine airfoils provide > 20% reduction in cooling flow and increased operating temperature capability.

CLEEN tech will provide ~1% fuel burn reduction

For more information: http://www.faa.gov/go/cleen
CLEEN Phase II Overview

CLEEN Phase II Program Details:
- Reducing environmental impacts via aircraft technology and alternative jet fuels
- Five year effort to accelerate technology maturation *(2015-2020)*
- 50% cost share; total FAA budget: ~$100M

CLEEN Phase II Program Goals:
- 32 dB\(^1\) cumulative noise reduction
- 70%\(^2\) landing/take-off NOx emissions reduction
- 40%\(^1\) fuel burn reduction

Conducting ground and/or flight test demonstrations of certifiable aircraft technologies with entry into service by 2026

Awardees:
- Aurora Flight Sciences
- Boeing
- Delta Tech Ops, America’s Phenix, MDS Coating Technologies
- General Electric (GE) Aviation
- Honeywell Aerospace
- Pratt & Whitney
- Rolls-Royce
- Rohr, Inc. / UTC Aerospace Systems

Based on 5-year cost share agreements with industry

\(^1\) Common baseline with CLEEN I goals

\(^2\) 70% reduction in landing and take-off NOx relative to CAEP/8 standard. Relative to CLEEN I baseline of CAEP/6 this is a 75% reduction.

For more information: http://www.faa.gov/go/cleen
CLEEN Phase II Technologies

- Aurora Flight Sciences: D8 Double Bubble Fuselage
- Boeing: Structurally Efficient Wing (SEW)
- Boeing: Compact Nacelle – Short Inlet
- Delta Tech Ops/MDS Coating Technologies/America’s Phenix: Leading Edge Protective Blade Coatings
- GE: TAPS III Combustor
- GE: FMS Technologies
- GE: More Electric Systems and Technologies for Aircraft in the Next Generation (MESTANG)
- GE: Low Pressure Ratio Advanced Acoustics
- Honeywell: Compact Combustor System
- Honeywell: Advanced Turbine Blade Outer Air Seal (BOAS) System
- Pratt & Whitney: High Pressure Compressor Aero-Efficiency Techs
- Pratt & Whitney: High Pressure Turbine Aero-Efficiency & Durability Techs
- Rolls Royce: Advanced RQL Low NOx Combustion System
- UTAS: Thrust Reverser Technology
Assessment of CLEEN Technologies

PARTNER Project 36 (Georgia Tech)

- Environmental Design Space (EDS) used to provide independent assessment of technologies (leveraged PARTNER Project 14 and NASA efforts)
- Modeled most, but not all CLEEN Technologies. Did not model all GE technologies
 - Open rotor engine
 - Engine control/flight management system integration
 - Flight management system/air traffic management integration

Follow-on Efforts

- ASCENT Project 10 (GeorgiaTech-Stanford-Purdue) – evaluating all CLEEN technologies for CO_2, NO_x and noise
- ASCENT Project 37 (GT) CLEEN II Technology Evaluation

Figure 40: Potential Fuel Burn Savings Provided by CLEEN Technologies Modeled in This Study

22 billion gallons of cumulative jet fuel saved
- 1.7 million cars off road between 2025 and 2050
- 2.75 billion annual savings to airlines

PARTNER Project 36 report can be downloaded at:
Aircraft Evolution – 1947 to Today

• Every large jet aircraft today is a descendant of the Boeing B-47\(^1\)

• Need a change in aircraft configuration to “solve” the aircraft noise challenge

Source:

The Jet as Art by Jeffrey Milstein\(^2\)
A Step-Change in Environmental Performance

• A step change in noise reduction will only be achieved if it is accompanied by a step change in fuel burn while ensuring safe operation

• Need to integrate engine, airframe and operations
 – Change configuration to allow larger bypass ratio engines
 – Shield engine noise with lifting fuselage
 – Flush mount engines to allow for boundary layer ingestion
 – Reduce cruise Mach with unswept wings

• Multiple Programs:
 – CMI Silent Aircraft Initiative
 – NASA Environmentally Responsible Aviation and N+3 Projects

• NASA New Aviation Horizons Initiative
 – Need flight demonstrations to mature new concepts
 – Critical to solving the noise challenge facing aviation

More Information:
• NASA ERA: http://www.aeronautics.nasa.gov/isrp/era/index.htm
• NASA SFW Project: http://www.aeronautics.nasa.gov/fap/sfw_project.html
• CMI SAI: http://silentaircraft.org/
Closing Observations

• Environmental and energy constraints are significant.
• Aviation noise causing considerable challenges today.
• Need a balanced approach to address aviation environmental impacts and energy concerns.
• Alternative fuels and technology will be key to overcoming environmental constraints.
• New users of NAS will present additional challenges (Unmanned Aerial Systems, Commercial Space Vehicles, Civil Supersonic Aircraft).
• We are advancing understanding, but not waiting; we are using best available methods to seek solutions now.
Dr. Jim Hileman
Chief Scientific and Technical Advisor for Environment and Energy
Federal Aviation Administration
Office of Environment and Energy
Email: james.hileman@faa.gov