A Pilot's Perspective on Arrival Noise

Captain Jonathan Bonds

A Pilot's Perspective on Arrival Noise a focus on the vertical path or descent angle

Will review:

- 3.0° approach considerations
 - 1000' stabilization requirement
 - High energy state
- The 3.2° approach
 - Heathrow & Frankfurt
- Greater than 3.2°
- Opportunities

Aircraft on a 3° Approach

Aircraft Approach Stabilization: 1000'

A pilot's goal is to be stabilized at 1000' above the runway's touchdown zone, with:

- Established on vertical path: not high or low
- Aircraft in the landing configuration: gear & flaps set
- Established on approach speed
- Power set

Unstable approaches can lead to landing accidents

• Airline Safety Programs monitor all approaches

If High or Fast, pilot may begin landing configuration early and/or use Speedbrakes

• Speedbrakes spoil lift by adding drag = up to a additional 6db (observed)

The 3.2°Approach: *aka Slightly Steeper*

Aircraft Height Comparison: 3.0° vs 3.2° 3.2° = approximately 20' per nautical mile higher

3.2° Approach Operations: Frankfurt & Heathrow

- Noise benefit: reduced thrust & slightly higher
- Frankfurt has 8 runway ends, with one 3.2°
 - ILS Runway 25R
 - 25R also has a 3.0° ILS to support low visibility operations (less than 1800' visibility)
 - Aircraft autopilot autoland limitations are typically less than 3.2°
 - Slightly steeper benefit terminates 14nm from runway
- Heathrow has 4 runway ends: in trial
 - Each runway has an RNAV (GPS) approach with a 3.2° glide path
 - Slightly steeper benefit terminates 10nm from runway
 - ILS approaches are 3°

3.2° Approach Operations: Frankfurt & Heathrow

Frankfurt & Heathrow Noise Results:

- Predominantly wide-body & single-isle aircraft
- Average noise reduction .7db*
- Max 1.4db* reductions at approximately 8nm
 A380
- No operational challenges, other than low visibility
 - Arrival rates
 - Stabilization
 - Note: Heathrow Study acknowledges fewer pilots accepted 3.2° with a tailwind

* ref: observed noise: Heathrow Slightly Steeper Approach Trial, August 2016

Approaches greater than 3.2° for noise: Steep Approach

- 3.0° is the historical standard
 - ICAO PAN OPS adopted 3.0° as the standard in 1978
- Greater than 3.0° approaches
 - Designed or envisioned for terrain separation
 - Van Nuys & San Diego use 3.5°
 - Requires higher weather minima: approximately ³/₄ miles vs ¹/₂
 - No large flight trials above 3.2°
 - Demonstrations Studies only

Approaches greater than 3.2° for noise: Steep Approach

- Large aircraft are currently limited to 3.5°
 - Large Aircraft's approach speeds are higher, increasing descent rates
 - Greater than 3.5° requires special crew training & possibly equipment modification
- Vertical Path Containment is the challenge, with steeper path
 - Autopilot will trade speed (accelerate) to maintain vertical path
 - Pilots will add drag noise to maintain speed
 - Offsetting steeper benefit

Vertical Path Containment on Final: RNAV (GPS or RNP)

- Aircraft must maintain vertical path +100'/-50'
 - maintaining targeted approach speed
- If unable, approach is aborted ۲

Arrival Opportunities

- What will the airspace support?
 - Factors affecting arrival noise
 - Arrival vs Departure de-confliction
 - Parallel and Converging Runway Operations
 - Terrain
 - Adjacent Airports & transient aircraft
- Minimize level flight segments below 6000'
 - Every 1000' provides an additional 3nm of idle/near engine idle descent
- Design procedures to manage energy/noise: ATC or PBN
 - Noise efficient speeds
 - Minimize use of speedbrakes or high speed configuration below 6000'
 - Allow pilots to solve the energy equation at higher altitude

Questions??