The Chemical Speciation Network (CSN) is a routine air monitoring network designed to complement the PM$_{2.5}$ monitoring network; support the implementation of PM$_{2.5}$ National Ambient Air Quality Standards (NAAQS); assist in developing and tracking emission control strategies; and provide data to aid in health studies. CSN sites are primarily located in urban areas and complement the largely rural Interagency Monitoring of PROtected Visual Environments (IMPROVE) network. The CSN target analytes are trace elements, ions, and carbon.

### Percent of Samples Successfully Collected and Analyzed Per Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>96</td>
</tr>
<tr>
<td>2005</td>
<td>95</td>
</tr>
<tr>
<td>2006</td>
<td>93</td>
</tr>
<tr>
<td>2007</td>
<td>98</td>
</tr>
<tr>
<td>2008</td>
<td>98</td>
</tr>
<tr>
<td>2009</td>
<td>99</td>
</tr>
<tr>
<td>2010</td>
<td>100</td>
</tr>
<tr>
<td>2011</td>
<td>91</td>
</tr>
<tr>
<td>2012</td>
<td>86</td>
</tr>
<tr>
<td>2013</td>
<td>97</td>
</tr>
<tr>
<td>2014</td>
<td>97</td>
</tr>
<tr>
<td>2015</td>
<td>98</td>
</tr>
<tr>
<td>2016</td>
<td>88</td>
</tr>
<tr>
<td>2017</td>
<td>96</td>
</tr>
<tr>
<td>2018</td>
<td>95</td>
</tr>
<tr>
<td>2019</td>
<td>100</td>
</tr>
<tr>
<td>2020</td>
<td>60</td>
</tr>
<tr>
<td>2021</td>
<td>94</td>
</tr>
</tbody>
</table>

Samples Successfully Collected and Analyzed in 2021 by Filter Type. PTFE: 121 (99.2%), Nylon: 121 (99.2%), Quartz: 102 (83.6%)

The plots below show temporal trends for site 34-039-0004 alongside network-wide CSN and IMPROVE average concentrations. The top plot shows the variability of the reconstructed fine mass (RFM) concentrations during 2021; RFM can only be calculated if all three filters collected on a sampling day are valid. The bottom plot illustrates the long-term trends of ambient concentrations; the gray shaded region represents the range of values measured each year at this site, illustrated using the 10$^{th}$ and 90$^{th}$ percentile values.

### Daily Reconstructed Fine Mass in 2021

![Graph showing daily reconstructed fine mass in 2021.](image)

### Long-Term Trends in Reconstructed Fine Mass

Missing years are due to low number of RFM values.

![Graph showing long-term trends in reconstructed fine mass.](image)

To view and download CSN data: [https://www.epa.gov/outdoor-air-quality-data](https://www.epa.gov/outdoor-air-quality-data)

EPA website with guidance documents and background information: [https://www.epa.gov/amtic/chemical-speciation-network-csn](https://www.epa.gov/amtic/chemical-speciation-network-csn)

EPA real-time air monitoring data: [https://www.airnow.gov/](https://www.airnow.gov/)

Univ. of California, Davis website with information about current research and publications: [https://aqrc.ucdavis.edu/csn](https://aqrc.ucdavis.edu/csn)

The Colorado State Univ. website with data resources, literature, and visibility overviews: [http://vista.cira.colostate.edu/improve/](http://vista.cira.colostate.edu/improve/)
The following plots summarize the chemical composition of particles collected at this site. The monthly averaged compositions calculated from 2017-2021 data are shown on the left while compositions for the day with the highest measured concentrations during 2021 are shown on the right.

### Average Monthly Particle Composition

<table>
<thead>
<tr>
<th>Month</th>
<th>Salt</th>
<th>Soil Dust</th>
<th>Soot</th>
<th>Organic Matter</th>
<th>Nitrate</th>
<th>Sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>1.8</td>
<td>2.2</td>
<td>0.2</td>
<td>1.4</td>
<td>1.29</td>
<td>4.125</td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components</th>
<th>Calculation</th>
<th>Natural Sources</th>
<th>Anthropogenic Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt</td>
<td>$1.8 \cdot \text{Chloride}$</td>
<td>Ocean spray, dry lakebeds</td>
<td>Chemical manufacturing, lake consumption</td>
</tr>
<tr>
<td>Soil Dust</td>
<td>$2.2 \cdot \text{Al} + 2.49 \cdot \text{Si} + 1.63 \cdot \text{Ca}$</td>
<td>Soil resuspension, dust storms</td>
<td>Construction, agriculture, deforestation, unpaved roads</td>
</tr>
<tr>
<td>Soot</td>
<td>$2.42 \cdot \text{Fe} + 1.94 \cdot \text{Ti}$</td>
<td>Wildfires</td>
<td>Motor vehicles, wood burning, smoking</td>
</tr>
<tr>
<td>Organic Matter</td>
<td>$1.4 \cdot \text{Organic Carbon}$</td>
<td>Plants, animals, wildfires</td>
<td>Motor vehicles, cooking oils, household cleaners</td>
</tr>
<tr>
<td>Nitrate</td>
<td>$1.29 \cdot \text{Nitrate}$</td>
<td>Plants, animals</td>
<td>Fertilizer, stock yards, chemical manufacturing</td>
</tr>
<tr>
<td>Sulfate</td>
<td>$4.125 \cdot \text{Sulfur}$</td>
<td>Volcanism</td>
<td>Coal-fired power plants, chemical manufacturing</td>
</tr>
</tbody>
</table>

The following map shows the average RFM concentrations for nearby sites in both CSN and the rural IMPROVE Network. The point shapes indicate which network the sites are associated with. The color bar indicates the average annual RFM concentration (micrograms per cubic meter) measured at each site in 2021.