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’ INTRODUCTION

Assessing measurement error is a nontrivial component of any
serious measurement program. Identifying and assessing all
possible sources of error makes heavy demands on human
expertise and judgment; retrospective analyses of measurement
uncertainty estimates for now well-established physical constants
have shown a consistent bias toward underestimating actual
errors.1,2 Errors arise from all aspects of a measurement process
including preparation, collection, analysis, and data reduction.7

Errors in the individual steps of the measurement process
compound into errors in the calculated quantity. Identifying
the sources of error becomes more difficult as the number of
steps in the process increases.

Many measurement programs use duplicate (collocated)
measurements to quantify a portion of the total measurement
uncertainty.3�6 Duplicate measurements offer closure to the
uncertainties predicted by propagating the uncertainties from
individual measurement steps, much as a total mass measure-
ment offers closure to a mass budget based on measurements of
individual chemical species. Analyses of collocated sampling data
from the Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) and Speciation Trends Network (STN)
show that the observed measurement uncertainties are higher
than predicted by the networks for several species.4,5

Errors in sample collection and data reduction can have a
common effect on the values for all analytes reported from a
given sample. Similarly, systemic analytical errors in techniques
such as chromatography and spectrometry can affect multiple
analytes in common.Other analytical errors may affect a subset of

mutually interfering species or only an individual species, de-
pending on the error mechanism. There can thus be multiple
levels of common errors nested within a data set; each species
measured in a sample is likely to have some unique and some
shared components of error. Correlations among errors in
different species may provide valuable information about the
sources of error because an error that is correlated among
different species presumably arises from a common source.

This paper extends the ideas underlying collocated-precision
calculations to the multivariate context, developing a framework
for the interpretation of correlations among errors in different
species. The analysis is applied to atmospheric aerosol speciation
measurements to make the ideas concrete but is easily adapted to
a variety of other contexts. The analysis reveals significant
interspecies correlations among the errors in routine IMPROVE
and STN measurements. A simplified model is developed to
distinguish the individual sources of error.

’DATA

Collocated measurements from IMPROVE and STN are used
in this analysis. Both networks measure concentrations of PM2.5

(particulate matter with diameters less than 2.5 μm) by collecting
24-h filter samples every three days. The two networks use similar
equipment and techniques. IMPROVE and STN collect PM2.5
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ABSTRACT: A standard metric of measurement precision in environmental monitoring is the
variance of differences between duplicate (collocated) samples. With duplicate measurements of
multiple species, we can extend this variance analysis to include the interspecies covariance of
differences between duplicate samples; these covariances can provide clues about the sources of
error. We illustrate the potential of such an analysis with atmospheric aerosol measurements from
two national air quality monitoring networks: Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) and Speciation Trends Network (STN). These aerosol “speciation” networks
provide the multivariate data sets needed to characterize error covariance by operating duplicate
samplers at several of their monitoring locations and analyzing both the collected aerosol samples for
multiple species. We observe covariance among the measurement differences for multiple species in
both networks. The covariance among measurement differences for soil-derived elements suggests
an error associated with the particle size discrimination step in sampling, which is not currently
included in either network’s uncertainty estimates. The multivariate statistical analyses of aerosol
speciation data performed by standard source apportionment models assume that measurement errors in different species are
independent of each other; the present analysis invalidates this assumption for several species measured by IMPROVE and STN.
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on Teflon filters that are weighed for mass and analyzed by X-ray
fluorescence (XRF) for most elements with atomic numbers
between Na and Zr; IMPROVE also measures H by Proton
Elastic Scattering (PESA). Precision estimates based on the
collocated data have been published for both networks.4�6

IMPROVE is a cooperative measurement effort designed to
characterize current visibility conditions in scenic areas
(primarily National Parks and Forests). IMPROVE operates
approximately 170 sites across the United States (US), seven
of which have duplicate samplers. This analysis uses data
collected from 2005 through June 2009 at the seven collocated
sampling sites: Mesa Verde (MEVE) National Park (NP) in
CO, Olympic NP (OLYM) in WA, Phoenix (PHOE) in AZ,
Proctor Maple Research Facility (PMRF) in VT, Sac and Fox
Nation (SAFO) in KS, Trapper Creek (TRCR) in AK,
and Saint Marks (SAMA) in FL. The IMPROVE data
were downloaded from http://vista.cira.colostate.edu/views/
in April 2010.

STN is designed to support the National Ambient Air
Quality Standards (NAAQS) for PM2.5 and provides data on
the chemical composition of PM2.5.

14 STN operates 54 sites
across the US, six of which have duplicate samplers. This
analysis uses data collected from 2005 through January 2010 at
the six collocated sampling sites: Bakersfield, CA; Riverside,
CA; New Brunswick, NJ; Cleveland, OH; Boston, MA; and
Houston, TX.4 The STN data were downloaded from http://
www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm/
in June 2010.

Many of the elements measured by XRF are present only at
very low concentrations. To avoid the distractions introduced
by missing data, this analysis is limited to nine species (eight
elements and mass) that are commonly detected in IMPROVE
and five species (four elements and mass) that are commonly
detected in STN. Fewer elements are used for STN because
its higher limits of detection translate into fewer detected
concentrations.15

Two screening criteria were applied to the data. The first
criterion is intended to minimize the uninformative noise
associated with measurements below the detection limits; only
data greater than the detection limit, defined as the critical limit,
were used in the analysis.15 For STN, the reported method
detection limits were used, and for IMPROVE, the 95th percen-
tile field blank concentrations were used to screen the data. Se
and V are most affected by this criterion and strict adherence
would eliminate an unacceptably high number of data records;
therefore, instead of completely eliminating all records with data
below the detection limit, concentrations were considered equal
when both observations were below the detection limit (i.e., the
collocated concentration ratios were set equal to one, c2/c1 = 1,
where subscripts 1 and 2 distinguish the collocated samples).
If the differences are biased, this treatment may affect the error
estimates, but if the differences are unbiased this treatment will
have no effect on the error estimates. The second data screening
criterion focuses the analysis on the representative bulk of the
observations; we do not want outliers to drive the statistics. For
each species the collocated concentration ratios were screened to
retain only those between the first and 99th percentiles, thereby
eliminating the worst outliers. The cumulative effect of this
criterion is to eliminate 5�10% of the measurement days,
because the outlying ratios occur on different days for different
species, and the covariance is only calculated for days when all
selected species pass the screening criteria.

’METHODS

Errors and Observed Differences. Uncertainties and errors
are commonly given in relative terms, with the expectation that
their magnitudes are generally proportional to the concentration.
The relative differences observed between collocated measure-
ments can be expressed in various ways. The U.S. Environmental
Protection Agency regulatory guidance specifies the ratio of the
difference to the mean as the basis for reporting collocated
precision statistics.16 A more tractable metric for the analyses
undertaken here will be the natural log of the collocated
concentration ratio, ln(c2/c1) � Δ. The natural log transforma-
tion helps to normalize the distribution of ratios, which is skewed
to the right because it is limited by a value of zero on the left. For
simplicity, Δ will be referred to here as the measurement
difference. Δ reflects the combined effect of errors in both of
the collocated measurements. If the true concentration, C, is
known, and ei and εi are defined as the absolute and relative errors
in ci, respectively, the ratio would provide an estimate of the true
relative error,

ln
ci
C

� �
¼ ln

Cþ ei
C

� �
¼ lnð1þ εiÞ � εi ð1Þ

The small-error approximation ln(1 þ ε) = ε is justified by
previous analyses that showed relative errors (εi) ranging from
0.05 to 0.17, depending on the species.4�6 Using approximation
1 to interpret the ratio of the two measurements yields the
difference between the two measurements’ errors

Δ � ln
c2
c1

� �
¼ ln

c2
C

C
c1

� �
¼ ln

c2
C

� �
� ln

c1
C

� �

� ε2 � ε1 ð2Þ
Collocated differences do not capture the total error in an

individual measurement because any errors that affect both
samplers similarly escape detection. As shown in (2), the true
concentrations cancel out in our formulation. This is an inherent
limitation of using collocated precision determinations to deter-
mine error. For example, if the flow meter used to calibrate both
samplers is biased, both samplers will have a flow rate bias that is
not captured because the errors cancel out in the calculation of
differences. Similarly, if both samples are analyzed on the same
mis-calibrated laboratory instrument, the resulting analytical
errors will cancel out. Collocated measurements only reveal
differences between the two measurements and therefore under-
state total errors. This paper focuses on determining if there are
common errors among the various species measured by each
sampler; the errors common among different species will be
revealed with our analysis as long as the errors are not also
common to both samplers. For the remainder of this paper,
“common errors” refer to errors that are common among
elements and not to errors that are common between the
collocated samplers, which cannot be detected by this analysis.
To begin the analysis, we visually inspect the relationships

between the measurement differences, Δx, at all the collocated
sites for a range of species x. Figure 1 shows a scatter plot matrix
of Δx for five species measured in (a) IMPROVE and (b) STN.
Figure 1 shows some weak relationships among the differ-
ences for most species in the IMPROVE network and some
stronger relationships among Fe, Ca, and Si in both networks.



4032 dx.doi.org/10.1021/es102605x |Environ. Sci. Technol. 2011, 45, 4030–4037

Environmental Science & Technology ARTICLE

It is important to bear in mind that Figure 1 plots concentration
differences (our indication of measurement error) and not the
concentrations themselves.We expect associations among different
species’ concentrations; stagnation promotes the accumulation of
all species’ concentrations, for example, just as ventilation and
dilution lower all species’ concentrations. However, measurement
errors in different species’ concentrations are usually modeled as
random, unrelated to actual atmospheric conditions and indepen-
dent of each other; this model is inconsistent with the interspecies
associations seen between measurement differences in Figure 1.
The associations between different species’ measurement

differences are more pronounced at some individual sites;
Figure 2 shows the scatter plot matrix for the (a) IMPROVE
Phoenix and (b) STN Riverside sites. At these two sites, Fe, Ca,
and Si differences show strong correlations and additionally
correlate with mass concentration differences. The Phoenix site
is very dusty and has high concentrations of soil-related elements,
such as Fe, Ca, and Si, which constitute a large fraction of the
mass. Once again, correlations among Fe, Ca, and Si concentra-
tions are to be expected because these elements are all associated
with soil dust, but such concentration associations should not
lead to measurement error associations.

Next, we quantify the relationships to further understand their
significance. The relationships in Figures 1 and 2 can be
expressed with two common statistical quantities: covariances
or correlation coefficients. Covariance is an absolute measure of
the shared variation between two species, cov(Δx,Δy) =
[Σi=1

n (Δyi � Δy)(Δxi � Δx)]/(n � 1). The correlation coeffi-
cient, r, divides the covariance by the standard deviations of the
two species to create a normalized measure of the shared variation
between two species, r = [cov(Δx,Δy)]/[(sΔx

2
3 sΔy

2)1/2], where
sΔy

2 = [Σi=1
n (Δyi�Δy)2]/(n� 1). Covariances aremore useful for

analysis, because the covariance contributions from independent
sources of error are additive, but correlation coefficients are more
familiar so they are presented first.
Table 1a presents the correlation matrix for the IMPROVE

collocated sites, corresponding to Figure 1. The correlations
show a couple interesting features that are straightforward to
interpret. The most obvious of these, already evident in Figure 1,
is that the dust elements (Fe, Ca, and Si) have higher correlation
coefficients than any other species in Table 1a. The weakest
correlations are between ΔBr and Δmass (0.096) and ΔS and
Δmass (0.144); all species are expected to share an error related
to slight differences in sample volume between the two samplers,

Figure 1. Scatterplot matrix of observed differences, Δx � ln(cx,2/cx,1) where x = Br, S, mass, Fe, Ca, and Si, from the (a) IMPROVE and (b) STN
collocatedmeasurements. Along the diagonal are histograms of the observed differences for each species. Off the diagonal are scatterplots of the observed
differences in one species versus the observed differences for another species. For example a point in the lower left graph represents the observed
difference in duplicate Si measurements versus the observed difference in the duplicate Br measurements from a single day.

Figure 2. Scatterplot matrix of observed differences,Δx� ln(cx,2/cx,1), in the collocated concentrations at the (a) IMPROVE Phoenix site and (b) STN
Riverside site.
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and these weak correlations are likely indicative of the
volume error.
Alternatively, covariances can be used to quantify the relation-

ships in Figures 1 and 2. Recall thatΔx= εx,2� εx,1 includes two
measurement errors, one error associated with the measurement
from each sampler and collocated measurements of the same
species overlook any errors shared by both measurements. It is
reasonable to assume that the unshared errors in the collocated
measurements are statistically independent of each other, so that
cov(εx,1,εx,2) = cov(εy,1,εy,2) = 0, and are drawn from a common
distribution of potential errors. With these assumptions, the
covariance between any two species’ measurement differences
simplifies to

covðΔx,ΔyÞ ¼ covðεx, 2 � εx, 1, εy, 2 � εy, 1Þ = covðεx, 1, εy, 1Þ
þ covðεx, 2, εy, 2Þ = 2covðεx, εyÞ ð3Þ

Table 1b shows the covariance matrix for all the IMPROVE sites;
since cov(Δx,Δx)= 2 cov(εx,εx) = 2var(εx), the diagonal entries
provide estimates of the total error variance for each species.
The physical, as opposed to statistical, significance of the

relationships between the observed differences is hard to judge
directly from the covariance matrix, whose dimensions are
squared differences. Although these are the dimensions in which
individual errors are additive, it is in terms of the relative errors
themselves that most of us maintain our expectations. The square
root of the variance (standard deviation) is a widely usedmeasure
of error. The next section will illustrate that the covariances can
be interpreted as the variances of shared errors. Table 1c shows
the relative error estimates obtained by taking the square roots
of one-half the observed covariances, Eobs = {[(cov(Δx,Δy))/
(2)]1/2}� 100%. The same patterns are observed in this relative
error matrix as in the correlation and covariance matrices but the
numbers are more familiar.

’MODEL

Both IMPROVE and STN have existing models for the error
distributions but the models are not well suited to the present
analysis. A simple model of the error in individual measurements
involving only three sources of error will be developed here to
help interpret the correlations among the measurement differ-
ences. In keeping with our characterization of error in relative
terms, the effect of each error is multiplicative. In general, some
errors are proportional to the magnitude of the concentration
while other errors are absolute or independent of the measured
concentration.5 For example, calibrations typically include slope
(span) and offset (zero) terms; error in the slope results in a
multiplicative error whereas error in the intercept results in an
absolute error. At high concentrations, the absolute errors

become relatively insignificant and the multiplicative errors
dominate the overall error. As mentioned above, we excluded
concentrations below the detection limit, where absolute errors
dominate, from this analysis.

The measurement of PM2.5 species concentrations can be
conceptualized as a series of three operations, each subject to
error. First a volume of air is pulled through a cyclone inlet
designed to remove particles with aerodynamic diameters above
2.5 μm from the air stream; errors in this operation result in more
or less particulate matter being collected on the filter than
intended. Next, the mass of species collected on the filter is
determined, and there is error associated with this analysis.
Lastly, the species concentration in the sampled air is calculated
by dividing the mass by the sample volume, which is measured
with some error. The following notation will facilitate the
dissection of the total concentration measurement error into
its component parts: x, species; V, true volume of sampled air; v,
volumemeasured for sampled air; Lx, true mass of particulate x in
the sampled air; Lx,2.5 = FxLx, true mass of PM2.5 x in the sampled
air; Λx = fxLx, true mass of x collected on the filter; λx, mass of
x measured on the filter.

In the above terms, the measured and true concentrations for
PM2.5 x in the sampled air can be written as cx = λx/ν (measured)
and Cx,2.5 = Lx,2.5/V (true). The relative error in the measured
concentration is then cx/Cx,2.5 = (λx/Lx,2.5)(V/ν). Note that
Lx,2.5 = Fx Lx = (Fx(Λx/fx)), so the factor λx/Lx,2.5 = (λx/Λx)(fx/
Fx) is the product of the relative errors (λx/Λx) in the analytical
determination and (fx/Fx) in the particle size classification. The
total concentration error is thus the product of three multi-
plicative errors: cx/Cx,2.5 = (λx/Λx)(fx/Fx)(V/ν). Logarithms
convert this decomposition into a sum, which lends itself more
directly to classical statistical manipulations, and the small-error
approximation ln(θ) = θ � 1 once again allows these log ratios
to be interpreted directly in terms of relative error

εx = ln
cx

Cx, 2:5

 !
¼ ln

λx
Λx

� �
þ ln

fx
Fx

� �
þ ln

V
v

� �

= εan, x þ εsize, x þ εvol: ð4Þ
Volume errors (εvol) result primarily from errors in the sample

flow rate measurements. Sample flow rate measurement errors
equally affect every species measured on a sample because
volume is used to calculate all species concentrations. Departures
of flow rate from nominal do affect size discrimination, but
uncertainties in measuring flow do not; non-nominal flows can
be accurately measured and nominal flows can be inaccurately
measured. The volume error, εvol, will accordingly be modeled as
a random variable that is statistically independent of all other
uncertainties.

Table 1. Correlation, Covariance, and Relative Error Matrices of Measurement Differences for All IMPROVE Collocated Sites

(a) correlation matrix (b) covariance matrix (c) shared relative error matrix

ΔBr ΔS Δmass ΔFe ΔCa ΔSi ΔBr ΔS Δmass ΔFe ΔCa ΔSi ΕBr ΕS Εmass ΕFe ΕCa ΕSi

ΔBr 1.000 ΔBr 0.008 ΕBr 6%

ΔS 0.523 1.000 ΔS 0.002 0.003 ΕS 3% 4%

Δmass 0.096 0.144 1.000 Δmass 0.001 0.001 0.006 Εmass 2% 2% 5%

ΔFe 0.261 0.378 0.470 1.000 ΔFe 0.003 0.003 0.005 0.020 ΕFe 4% 4% 5% 10%

ΔCa 0.236 0.347 0.421 0.758 1.000 ΔCa 0.003 0.003 0.005 0.017 0.026 ΕCa 4% 4% 5% 9% 11%

ΔSi 0.243 0.347 0.328 0.663 0.679 1.000 ΔSi 0.004 0.003 0.004 0.017 0.019 0.031 ΕSi 4% 4% 5% 9% 10% 12%
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For each species measured, there is error associated with the
analytical technique. The errors in elements determined by XRF
are assumed to be statistically independent although there is
evidence, outside the scope of this paper, that spectral interfer-
ences cause some dependencies. In addition, we assume the
analytical errors are causally unrelated to particle size discrimi-
nation errors although it is known that X-ray self-attenuation
is a function of particle size. The relative analytical error,
εan,x = ln(λx/Λx), will be modeled as an independent random
variable.

The IMPROVE and STN samplers employ cyclone separators
designed to trap coarse particles and pass particles with diameters
less than 2.5 μm through to the sample filter. Size discrimination
errors εsize can be caused by flow rates that depart from nominal,
particles breaking apart in the cyclone, or particles bouncing off
the sides of the cyclone. The IMPROVE samplers use a critical
orifice to set the flow rate; this passive control allows flow rates to
decrease as the filter loads with particulate matter, and the
decreased flow rates allow slightly larger particle diameters to
survive the cyclone . The STN samplers have active flow control
which minimizes deviations from the nominal flow rate. The
magnitude of εsize is affected by the ambient particle-size
distribution; this error will be more obvious at sites heavily
influenced by coarse particles. Like the other errors, εsize will be
modeled as an independent random variable.

The size discrimination error does not affect all particles.
Consider an idealized mix of “haze” particles supplying all of one
group of elements and “dust” particles supplying all of another.
All haze particles are assumed small enough that the sampling of
haze elements is insensitive to variations in the cyclone cut-point.
The dust particles are allowed to vary in composition and size
from sample to sample, but all dust particles in a given sample are
assumed to have the same elemental composition. Under these
assumptions, the error resulting from cut-point variations is
identically zero for haze elements in all samples and takes a
common value εsize � ln(f/F) for all dust elements in any
individual sample. Total PM2.5 mass includes both haze and dust
particles, and the impact of the size discrimination error on mass
depends on the mix.

The model for the total error is the sum of three independent
random variables, εx = εan,x þ εvol þ εsize. As mentioned
previously, if the individual sources of error affecting a species
are independent, the individual error variances are additive.
Similarly the error covariance of a pair of species is the sum of
their shared-error variances as illustrated in Table 2 for haze
elements a,b and dust elements c,d. Fitting the model described
above to this matrix provides estimates of the total error variances

for each species and, by comparison of off-diagonal terms,
estimates of var(εvol), var(εsize), and var(εan,x).

’RESULTS

The interpretation of a covariance matrix in terms of error
components is illustrated with site-specific data from collocated
IMPROVE and STN samplers. The elements in this analysis can
be grouped by particle size under three categories: “haze”, “dust”
and “both” haze and dust. Br, H, S, V, and Se tend to be associated
with particles in the <1 μm size range and are categorized as
“haze”.17�19 In the absence of industrial sources, the majority of
Fe, Ca, Si, and Ti mass arises from soil dust in the >1 μm size
range, and these elements are categorized as “dust”.17,18 Total
PM2.5 mass can contain both “haze” and “dust” elements, and so
is categorized as “both”.

Table 3 shows the total and shared error estimates for each
IMPROVE collocated site. Uncertainty ranges are omitted from
Table 3 for visual clarity but are provided in the Supporting
Information. Results for the TRCR site are not included
because it has a relatively small number of records meeting
the detection limit screening criteria (138 records). Generally,
the median uncertainty in the error estimates is(0.4%; a small
number of the error estimates (less than 10%) have uncertain-
ties larger than (1% and most of these high uncertainties are
associated with errors in V attributed to measurements near the
limit of detection. Dashes in cells indicate instances where the
square root is undefined because the covariance is negative.
These negative values predominantly occur with the trace
elements V and Se.

The diagonal terms in Table 3, IMPROVE total error esti-
mates, show interesting patterns by site. First, Br, S, and H are
well-measured haze elements at all the sites with median total
errors of 6%, 3%, and 7%, respectively. V and Se error estimates
show more variation by site. V total error is lowest at OLYM,
because OLYM experiences relatively high V concentrations,
likely from oil burning in the ocean shipping industry,20�22 and
the (relative) analytical precision is better at these higher
concentrations.5,6 The differences in Se total error are likely
related to the range of concentrations measured at the individual
sites. The behavior of the total error estimates for mass and the
dust elements splits the sites into two groups; PHOE and MEVE
total errors are twice as high as the other sites for these four
species. PHOE and MEVE are situated in dry, dusty environ-
ments so the high errors are associated with high concentrations;
this suggests that the errors are not analytical, because (relative)
analytical errors tend to decrease with increasing concentrations.

Table 2. Covariance Matrix for Two Generic Haze Species a,b and Two Generic Dust Species c,d with Each Covariance Broken
down into Its Model Components
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The off-diagonal terms in Table 3, IMPROVE shared error
estimates, vary across species indicating that there are multiple
sources of error affecting the measurements, as described by the
model. The off-diagonal terms in the lower right corner, “dust”
components vs each other, are higher than in the rest of the
matrix at each site; our model suggests these high shared errors
are associated with a size discrimination error. In fact, the shared
errors account for essentially all the total error for each dust
element. As with the total error estimates, the magnitude of the
shared relative errors among the dust elements and mass varies
by site and the highest shared errors are associated with PHOE
and MEVE. The high shared errors among the soil elements at
these two sites partially extends to the haze elements, suggesting
that these haze elements are sometimes found in particles with
diameters >1 μm.19,23�27 The smallest shared errors are among
the haze elements and mass. The covariance model in Table 2
suggests attributing a minimum, or baseline, shared error to the
volume measurement, whose uncertainty has been indepen-
dently assessed at 3%. The shared errors are less uniform than
this would suggest, however; at four sites (OLYM, PMRF, SAFO,
and SAMA), the errors shared between mass and haze elements
are smaller than the errors shared among different haze elements.
This suggests the possibility of an error common to the element
measurements that does not affect the mass measurements,
perhaps a nonuniformity in the sample deposit. Nonuniform
deposits would not affect the mass measurement because the

entire filter is analyzed, but could cause a shared error in the XRF
and PESA measurements because only a portion of the filter is
exposed to the exciting beam of X-rays or protons.

Table 4 shows the total and shared error estimates for the three
STN collocated sites that have over 200 data records meeting the
screening criteria. Results for all six STN sites along with
uncertainty ranges are included in the Supporting Information.
The STN total error estimates are generally higher than the
IMPROVE estimates for the same species, particularly for Br.
The S and mass total errors are similar at all the sites, whereas the
dust elements showmore variation by site. Similar to IMPROVE,
the dust elements have higher shared error estimates than the
other species. Unlike IMPROVE, the shared errors betweenmass
and the haze elements do not appear to be any different from the
shared errors among haze elements. The STN XRF instruments
compensate for possible deposit inhomogeneity by spinning the
filters during the analysis.

’DISCUSSION

The preceding analysis has revealed a major source of mea-
surement error that is not currently addressed by the uncertainty
models for either IMPROVE or STN. Measurements in both
networks exhibit errors shared across the soil elements that are
predominantly associated with particle diameters >1 μm. The
interspecies correlation of these errors suggests a common error

Table 3. Estimates of Total (Diagonal) and Shared (Off-Diagonal) Errors for Each IMPROVECollocatedMonitoring Site, Eobs =
[(cov (Δx,Δy))/2]1/2 � 100%a

aUncertainty ranges are provided in the Supporting Information.
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in the misclassification of particle size. At sites with high soil dust
concentrations, the apparently incomplete exclusion of large
particles affects measurements of mass; at particularly dusty sites
it also contributes to error in species typically associated with
smaller particles, such as V, Se, H, S, and Br. The current
IMPROVE and STN uncertainty estimates do not include a
term representing size discrimination error; the strong correla-
tions among the errors in the dust-related elements suggest that a
size discrimination error term should be added to the uncertainty
models.

Concentration associations are exploited in multivariate
source apportionment approaches, where the ambient sample
is represented mathematically as a varying mix of chemically
distinct effluents from a collection of source types with stable
chemical compositions. This interpretation assumes that mea-
surement errors, being random and hence independent of each
other, can only obscure such associations and can never artifi-
cially inflate them, but this analysis shows that measurement
errors can artificially inflate the associations. Standard models for
such analyses allow users to input estimated measurement
uncertainties in individual species concentrations, but neglect
the possibility of correlations between errors in different
species.8,9 Tests on real and simulated data show a complex
dependence of the results on both real and estimated
uncertainties.10�12 Covarying measurement errors are particu-
larly relevant for factor-analytical approaches, which infer the
chemical profiles of sources from the observed covariance
structure of species concentrations.9,13

Considerable attention has been given in the literature on
source apportionment and other applications to the effects on
multivariate statistical analyses of measurement errors in spe-
ciated aerosol data. Positive matrix factorization was from the
beginning developed to accommodate heteroscedastic errors, by
allowing for the specification of sample-specific measurement
uncertainties.9 A number of recent studies have examined the

complications introduced by serial correlation of measurement
errors.13 The likely effects of the correlations examined here,
between measurement errors in different species, have by con-
trast largely escaped such attention. The only published con-
sideration we have found is in Christensen and Gunst,10 who
included interspecies correlations in some of the simulated data
they generated to test versions of the chemical mass balance
approach, none of which accounted for these correlations. Their
simulated correlations were r = 0 or 0.3 across all species, well
below some of the pairwise values exhibited in Table 1. A detailed
analysis of the implications of covarying errors for source
apportionment is beyond the scope of this paper, but our results
show this to be a clear need.
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