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Abstract 
 
Smoke impacts from large wildfires are mounting, and the projection is for more such events in the 
future as the one experienced October 2017 in Northern California, and subsequently in 2018 and 2020. 
Further, the evidence is growing about the health impacts from these events which are also difficult to 
simulate. Therefore, we simulated air quality conditions using a suite of remotely-sensed data, surface 
observational data, chemical transport modeling with WRF-CMAQ, one data fusion, and three machine 
learning methods to arrive at datasets useful to air quality and health impact analyses. To demonstrate 
these analyses, we estimated the health impacts from smoke impacts during wildfires in October 8-20, 
2017, in Northern California, when over 7 million people were exposed to Unhealthy to Very Unhealthy 
air quality conditions. We investigated using the 5-min available GOES-16 fire detection data to simulate 
timing of fire activity to allocate emissions hourly for the WRF-CMAQ system. Interestingly, this 
approach did not necessarily improve overall results, however it was key to simulating the initial 12-hr 
explosive fire activity and smoke impacts. To improve these results, we applied one data fusion and 
three machine learning algorithms. We also had a unique opportunity to evaluate results with 
temporary monitors deployed specifically for wildfires, and performance was markedly different. For 
example, at the permanent monitoring locations, the WRF-CMAQ simulations had a Pearson correlation 
of 0.65, and the data fusion approach improved this (Pearson correlation = 0.95), while at the temporary 
monitor locations across all cases, the best Pearson correlation was 0.5. Overall, WRF-CMAQ simulations 
were biased high and the geostatistical methods were biased low. Finally, we applied the optimized 
PM2.5 exposure estimate in an exposure-response function. Estimated mortality attributable to PM2.5 
exposure during the smoke episode was 83 (95% CI: 0, 196) with 47% attributable to wildland fire 
smoke. 
 
Keywords: Smoke, Particulate Matter, Wildfires, Health Impacts, Air Quality 
 
 
Introduction 
 
On October 8-9, 2017, a series of wildfires started in the northern San Francisco Bay Area, spread quickly 
over nine counties, and became major fires in the region (Figure 1). During the 12-day wildfire period, 
more than 200,000 acres were burned, about 8,400 houses and other buildings were destroyed, 43 
people died, 185 people were hospitalized, and over 100,000 people were displaced or evacuated. 
Because of the smoke and prevailing weather conditions, concentrations of PM2.5 (fine particulate 
matter with a diameter <2.5 micrometers) reached the highest levels ever recorded in the region. All 13 
air monitoring stations in the Bay Area captured at least one exceedance of the US EPA’s 24-hr average 
PM2.5 standard of 35 µg/m3, and the majority of them captured multiple days of exceedances. Daily (24-
hr average) PM2.5 concentrations reached 193 µg/m3 at air monitoring stations near the fires and 
tapered off to 40-50 µg/m3 in more distant areas. Thus, virtually all of the 7.2 million people living in the 
Bay Area were exposed to unhealthy air during the wildfire period.  
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California wildfires have been increasing in recent years for a combination of reasons, such as a warming 
climate, historical fire suppression policies, and a variety of pressures that put barriers on fuel 
treatments (Miller et al. 2020). This trend is expected to continue, where California wildfires are 
estimated to increase in frequency and health impacts on a growing population due to the effects of 
climate change and global warming (Abatzoglou and Williams 2016; Spracklen et al. 2009; Flannigan et 
al. 2013). Under a medium-high temperature scenario, California wildfire emissions by the end of 2100 
are projected to increase around 20-100% compared with the emissions in 1961-1990 (Hurteau et al. 
2014). This projection also predicted the maximum increase of emissions in northern California. 
According to global climate model simulations of complex climate-fire-ecosystem interactions, the 
magnitude of increases in wildfire aerosol emissions is estimated to be as great as the corresponding 
reductions in emissions projected to result from air pollution control policies (Zou et al. 2020). This is 
already happening; McClure and Jaffe (2018) showed that, although most regions of the country have 
declining PM2.5, the annual 98th percentile of daily averages is increasing in many parts of the western 
US, where wildland fires are increasing (Jaffe et al. 2020). 
 
Emissions of PM2.5 from wildfires in California have raised a series of concerns about their health 
impacts. Studies have analyzed the spatiotemporal correlations between wildfire PM2.5 emissions and 
respiratory health effects, such as risk of asthma exacerbation and chronic obstructive pulmonary 
disease (Reid et al. 2016a, 2016b; Rappold et al. 2011, 2017). Other studies have evaluated the effects of 
wildfire smoke exposure on increased cardiovascular and cerebrovascular emergency department visits 
(Wettstein et al. 2018), acute myocardial infarction (Weichenthal et al. 2017), risk of hospital admissions 
(Liu et al. 2017; Gan et al. 2017), asthma-related outcomes (Borchers Arriagada et al. 2019; Lipner et al. 
2019), and out-of-hospital cardiac arrests (Haikerwal et al. 2015; Hoshiko et al. 2019). The acute effect 
of fire smoke on children has been studied for symptoms such as increased eye and respiratory 
symptoms, medication use, and physician visits (Künzli et al. 2006). The economic cost of adverse health 
effects from wildfire emission exposure has been quantified (Fann et al. 2018; Kochi et al. 2010; 
Richardson et al. 2012), and those studies pointed out the necessity of considering the monetary value 
of preventing these specific adverse health outcomes when forming wildfire management policy. In a 
study of the 2003 Canadian wildfires, Henderson et al. (2011) compared three measures of forest fire 
smoke exposure—air quality monitors, a dispersion model, and plumes in satellite images—and 
examined the resulting impacts of smoke on respiratory and cardiovascular health outcomes. Jaffe et al. 
(2020) provide a comprehensive critical review of wildfire and prescribed burning impacts on health and 
air quality in the United States. 
 
A major challenge in studying the relationships between air pollution, weather or climate, and human 
health outcomes is how to characterize exposures at the population or individual level. There is a long 
history of improving estimates of particulate matter and other trace gas species in air quality modeling 
with methods such as bias correction, ensemble modeling, and Kalman filtering (e.g. Djalalova et al. 
2015; Huang et al. 2017; Zhang et al. 2020; Crooks and Ozkaynak 2014). Additionally, data fusion and 
machine learning techniques combine chemical transport model outputs, meteorological model 
outputs, remotely-sensed data, and surface monitoring data to improve air quality estimates (e.g. Chu et 
al. 2016; Engel-Cox et al. 2004; Gupta and Christopher 2009; Liu et al. 2004; van Donkelaar et al. 2010; 
Al-Hamdan et al. 2014, 2009). Recent studies applied these methods to periods of wildland fire air 
quality impacts. These impacts are episodic in nature and can result in particulate matter concentrations 
well above mean values, conditions that can confound the performance of otherwise successful bias 
correction approaches (e.g. Huang et al. 2017). Some of the first works combining surface 
measurements, remotely-sensed data, and modeled data for wildland fire smoke exposure were in 
British Columbia, Canada, using empirical models to estimate daily PM2.5 concentrations (Yao and 
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Henderson 2014; Yuchi et al. 2016). Lassman et al. (2017) used a ridge-regression model to estimate 
PM2.5 exposure from smoke during the 2012 Washington wildfires; this method was adopted by Gan et 
al. (2020) and applied to the 2013 Oregon wildfires. Other geostatistical studies combined chemical 
transport model outputs, meteorological model outputs, satellite observations, and surface monitoring 
data. Zou et al. (2019) used three machine learning algorithms to estimate PM2.5 exposure from the 
2017 wildfires in the Pacific Northwest; Cleland et al. (2020) used the Constant Air Quality Model 
Performance and Bayesian Maximum Entropy methods for the 2017 Northern California wildfires; Bi et 
al. (2020) used AOD and purple air monitoring data in a random forest model for the 2018 California 
wildfires; O’Dell et al. (2019) used two methods for the continental US; and Geng et al. (2018) used a 
Bayesian ensemble model for Colorado wildfires in 2011-2014. 
 
In a comprehensive review, Diao et al. (2019) examined the methods, data sources, and applications of 
surface PM2.5 estimates from eleven datasets of daily and annual PM2.5 concentrations for the 
continental U.S. that were derived using a mix of surface monitoring data, chemical transport modeling, 
and remotely sensed data. They found that several of these publicly available, frequently used PM2.5 
datasets showed significant discrepancies with each other at county-average level in the contiguous 
United States. This study highlighted the importance of conducting inter-comparison studies on PM2.5 
estimates and contrasting the methods used for deriving them. Therefore, we simulated air quality 
conditions using a suite of remotely sensed data, surface observational data, chemical transport 
modeling, and data fusion and machine learning methods to arrive at datasets useful to air quality and 
health impact analyses specific to wildland fire. 
 
We focused on the five large wildfires comprising the Wine Country wildfires of October 8-20, 2017 that 
occurred in Napa and Sonoma Counties of California, known for their extensive vineyards and wineries. 
These were the Atlas (52K acres), Tubbs (37K acres), Nuns (57K acres), Pocket (17K acres), and Redwood 
Valley Incident (37K acres) wildfires. Figure 1 shows the fire perimeters in red. Mass and Ovens (2019) 
gave a detailed analysis of the meteorological conditions preceding and during the wildfire period. 
Strong offshore winds downed power lines the evening of October 8, igniting the Tubbs fire at about 
2145 PDT. Wind gusts ranged from 30 to 50 m/s, rapidly spreading the fires; for example, the Tubbs 
wildfire traveled over 19 km in the first 3 hours (Griggs et al. 2017). These strong, dry, offshore “Diablo” 
winds are similar to Santa Ana winds that occur in southern California; they usually occur in the fall and 
winter and are generally strongest at night (Smith et al. 2018). 
 
In Sonoma County, coniferous forest and oak woodlands comprise about 50% of the land area, with 
some redwood ecosystems and coastal prairie grasses. Historically, frequent low-intensity fires were 
part of the natural ecology of many of these ecosystems, consuming dead vegetation and small trees, 
leaving more large trees alive. Growth of the wildland urban interface (WUI), where one-third of the 
Sonoma population live, along with land ownership fragmentation and effective fire suppression, have 
led to a buildup of vegetation on the landscape. Before ignition on October 8, conditions were typically 
although not abnormally dry (Mass and Ovens, 2019), but substantial precipitation in the previous 
winter had enhanced the growth of fine fuels such as grasses and shrubs, providing a plentiful fuel 
source for a potential ignition (Dudney et al. 2017). Such an ignition occurred when high winds downed 
trees and powerlines (Keeling 2018), igniting the plentiful dry fuels. Historically, many coastal-proximal 
ecosystems in California are “ignition-limited”, meaning that non-human sources of ignition (e.g. 
lightning) are rare during periods when fuels and climate are suitable for burning; interior forests and 
deserts experience frequent lightning strikes (Steel et al. 2015). Today, ignitions based on equipment 
use, smoking, campfire, railroad, arson, debris burning, fireworks, and powerlines account for 84% of 
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2. Data and Methods 
 
During October 8-20, 2017, ground-based and remotely sensed data were brought together for regional 
modeling of near-surface PM2.5 concentrations, and one data fusion and three machine learning 
methods were applied to optimize datasets for smoke exposure estimates over California from five 
major wildfires: Nuns, Pocket, Redwood Valley, Tubbs and Atlas (Figure 1). First, a fire emission 
inventory was developed using GOES-16 Advanced Baseline Imaging (ABI), Visible Infrared Imaging 
Radiometer Suite (VIIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) fire detections 
and Fire Radiative Power (FRP). These data were used in two air quality modeling system simulations 
along with an anthropogenic emission inventory customized for Northern California. A third air quality 
simulation was run without fires. Data fusion and three machine learning approaches were then applied. 
The net result was seven datasets (3 predictions, 4 analyses) of daily PM2.5 concentration estimates 
appropriate for use in an exposure-response relationship to estimate the mortality attributable to the 
wildfire smoke.  
 
2.1 Surface Monitoring Data 
 
Ground-based observational data were obtained for October 2017 from two sources: The first source 
was the US Environmental Protection Agency (EPA) Air Quality System (AQS, https://www.epa.gov/aqs), 
which contains ambient air pollution data collected by EPA, state, local, and tribal air pollution control 
agencies from thousands of monitors. The second source was from the cache of temporary monitors 
deployed during wildfire operations by the Interagency Wildland Fire Air Quality Response Program 
(IWFAQRP) and the California Air Resources Board (CARB). In California, these monitors are 
Environmental Beta Attenuation Monitors (EBAM; Met One Instruments, Inc.). Laboratory (Trent 2006) 
and field (Schweizer et al. 2016) studies evaluating EBAM performance with federal reference method 
monitors (which comprise most of the permanent monitoring network) found correlations greater than 
0.9 with a tendency of the EBAM to overestimate PM2.5 especially when relative humidity was greater 
than 40% (Schweizer et al. 2016). Data were accessed and processed by the PWFSLSmoke R statistical 
package developed by Mazama Science (https://github.com/MazamaScience/PWFSLSmoke).  
 
Figure 2 shows the locations of the permanent and temporary PM2.5 monitors. The locations are color-
coded by the maximum EPA Air Quality Index (AQI; https://www.airnow.gov/aqi/aqi-basics/) measured 
during October 6-20, 2017. AQI translates 24-hr average PM2.5. concentrations into actionable health 
information: Good (green), Moderate (yellow), Unhealthy for Sensitive Groups (USG, orange), Unhealthy 
(red), Very Unhealthy (brown), and Hazardous (purple). Many locations across California had USG and 
Unhealthy conditions, and several days in Napa and the southern Sierra Nevada Mountains had Very 
Unhealthy conditions. The maximum 24-hr average PM2.5 concentration in the southern Sierras (204 
μg/m3) was measured at a temporary monitor. The maximum 24-hr average PM2.5 concentration in 
Northern California (193 μg/m3) was measured at a permanent monitor in Napa. 
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atmospheric aerosols and bidirectional reflectance from MODIS data (NASA, 2020a). It further detects 
clouds and corrects atmospheric effects over both dark (vegetated) surfaces and bright (desert) targets. 
MAIAC provides a suite of atmospheric and surface products in HDF4 format, including (1) daily 
MCD19A1 (spectral BRF, or surface reflectance), (2) daily MCD19A2 (atmospheric properties), and (3) 8-
day MCD19A3 (spectral BRDF/albedo). The MAIAC Daily Atmospheric Properties Product (MCD19A2) 
over land includes the following properties at a 1-km spatial resolution: column water vapor (CWV), 
cloud mask, aerosol optical depth (AOD), aerosol type (background/smoke/dust), and smoke injection 
height (Lyapustin and Wang, 2018; NASA, 2020b). For this study, we processed daily MAIAC AOD for the 
month of October 2017 for use in the machine learning products and used the standard MODIS AOD in 
the data fusion product.  
 
2.3 Fire Emission Inventories and Chemical Transport Modeling (CMAQ) 
 
We conducted regional air quality modeling using the Community Multiscale Air Quality (CMAQ) 
modeling system v5.2 (CMAS 2017) with meteorology from the Weather Research and Forecasting 
(WRF) model version 3.7 (Skamarock et al. 2008). Three WRF-CMAQ simulations were conducted, as 
summarized in Table 1 and discussed here; one without fires and two with fires. The anthropogenic 
emission inventory used California Air Resources Board’s (CARB) emission inventory for area and 
nonroad sources, EMFAC2017 model output for on-road sources, and the Bay Area Air Quality 
Management District (BAAQMD) facility-level emissions data for point sources. Biogenic emissions were 
from the EPA BEIS3.61. Fire activity data were collected from the GOES-16 ABI instrument, the Terra and 
Aqua MODIS instrument, and the SUOMI-NPP VIIRS instrument. Fire emissions were calculated using the 
BlueSky Smoke Modeling framework (BSF; Larkin et al. 2009). The total modeling time period was 
October 2-20, 2017. The first several days were discarded as model spin-up, providing an analysis time 
period of October 6-20, 2017. 
 
Fire activity for the five large wildfires comprising the Napa Wine Country fires was based on the GOES-
16 satellite fire detections. The GOES-16 satellite was launched November 2016 and became operational 
in December 2017. It views the earth from the equator at a location southeast of Florida. Previous GOES 
suites had 5 spectral bands, returning data every 15 minutes at a 4-km resolution at nadir. The GOES-16 
ABI (Schmit et al. 2017, 2018) instrument has 16 spectral bands, returning data every 5 minutes at a 2-
km resolution at nadir. This dramatically improves the ability to view fire progression in real time and 
translates to an improvement in our capability to model hourly smoke production, making it possible to 
calculate fire emissions in near-real time as the fire moves from pixel to pixel. For those pixels with the 
highest-quality retrieval, the GOES Fire Detection and Characterization (FDC) product provides an 
estimate of FRP, which is an observation of instantaneous energy release. However, many pixels that 
identified burning did not have enough information to estimate FRP, for example because the satellite 
view is obscured by thick smoke. For each pixel location, we interpolated temporally between those 
instances where FRP was estimated to create a complete FRP record for each location at 5-minute 
resolution. Then we integrated the 5-minute data to produce hourly total Fire Radiative Energy (FRE) at 
each pixel. This fire activity information was used in the two modeled fire cases for the five large 
wildfires. 
 
Total emissions per day per fire pixel location were calculated using the BlueSky smoke modeling 
framework (BSF; Larkin et al. 2009). BSF has long been used operationally in the US Forest Service smoke 
forecasting products (Strand et al. 2012, Larkin et al. 2009), the EPA National Emission Inventory (Larkin 
et al. 2020), the Canadian BlueSky system (Schigas and Stull, 2018; Yao et al. 2013), and AIRPACT-5 
(Chen et al. 2008). Using BSF and the GOES-16 fire activity data, we created two wildfire modeling cases, 
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Baseline and GOES Temporal Profile (GTP; see Table 1). For the GTP case, we used the hourly derived 
FRE to allocate the daily emissions to an hourly emissions profile. For the Baseline case, we used 
emissions calculated from the BSF allocated diurnally to the default diurnal profile in CMAQ (Appel et al. 
2017), which is approximately gaussian in shape and maximum emissions occur at 1700 local time. 
Plume rise was calculated using the CMAQ plume rise (Pouliot et al. 2005) in the Baseline case and using 
the Briggs (1975) algorithm as implemented in BlueSky (Larkin et al. 2009) in the GTP case. In both cases 
the daily fire heat flux was allocated hourly according to the simulation time profile (e.g. Baseline or 
GTP), yielding hourly estimates of plume rise. 
 
The Wine Country wildfires ignited late in the evening of October 8, and the GTP case allows us to 
capture this initial fire activity, with the first fire detection at approximately 22:00 PDT; behavior not 
captured in the default time profile of the Baseline case. Further, Li et al. (2019) analyzed FRP data from 
polar orbiting and geostationary satellites, deriving time profiles of emissions for over 40 US ecosystems, 
and discuss how forested ecosystems in the western US and in particular California exhibit nighttime fire 
activity. Thus, we were motivated to take advantage of the new GOES-16 fire detection data to simulate 
this fire behavior which led to widespread smoke impacts across the state in the morning of October 9. 
 
Fire activity for the smaller fires in the modeling domain was based on the fire detections with higher 
spatial resolution, MODIS and VIIRS, provided in the NOAA Hazard Mapping System (HMS) product, as 
follows. First, for a given day, all HMS fire pixels were given a square buffer of a specified size, where the 
size of each square varied by satellite source. Sizes were determined roughly by the resolution size of 
the original satellite (e.g. VIIRS was 375 m and all other satellites were 1 km). Second, all intersecting 
squares were dissolved together into a set of disjoint polygons. Third, we summed the number of fire 
pixels within each polygon. Often when working with daily temporal resolution, satellites identify the 
same location multiple times over the course of the day. Because of this, we developed a reduced fire 
pixel counting method that grouped fire pixels together within 1 km. This was done by overlaying a 1-km 
resolution grid over each polygon, then summing the number of 1-km grid cells that contained at least 
one fire pixel. Lastly, area was then assigned to each polygon by multiplying the reduced number of fire 
pixels by an estimated size per pixel based on vegetation type (Larkin et al. 2020). Each polygon was now 
considered one fire location with a corresponding geographic location (center coordinates) and area 
estimation.  
 
Table 1. WRF-CMAQ model simulation summary. 
Settings No Fires Baseline GTP 
Period Oct 2-20, 2017 Oct 2-20, 2017 Oct 2-20, 2017 
Resolution Horizontal: 4-km 

Vertical: 37 layers 
Horizontal: 4-km 
Vertical: 37 layers 

Horizontal: 4-km 
Vertical: 37 layers 

Meteorology WRF v3.7 WRF v3.7 WRF v3.7 
Chemistry CMAQv5.2, SAPRC07, 

AERO6 
CMAQv5.2, SAPRC07, 
AERO6 

CMAQv5.2, SAPRC07, 
AERO6 

Fire Emissions -- BlueSky v3.5.1 BlueSky v3.5.1 
Fire Activity -- Five Wine Country 

Fires: GOES-16 
Other Fires: 
MODIS/VIIRS 

Five Wine Country 
Fires: GOES-16 
Other Fires: 
MODIS/VIIRS 

Fire Diurnal Profile -- Five Wine Country 
Fires: CMAQ (default) 

Five Wine Country 
Fires: GOES-16 
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Other Fires: CMAQ 
(default) 

Other Fires: CMAQ 
(default) 

Non-Fire Emissions CARB area and non-
road, EMFAC2017 on-
road, BAAQMD facility-
level point source 
emissions, BEIS3.61 

CARB area and non-
road, EMFAC2017 on-
road, BAAQMD facility-
level point source 
emissions, BEIS3.61 

CARB area and non-
road, EMFAC2017 on-
road, BAAQMD facility-
level point source 
emissions, BEIS3.61 

 
2.4 Data Fusion 
 
A major challenge in studying the relationship between air pollution, weather or climate, and human 
health outcomes is how to characterize population-level or individual-level exposures. Air quality 
modeling offers detailed information in time and space about potential exposure, but estimates are 
subject to high variability and uncertainties especially when modeling wildland fires (Jaffe and Wigder, 
2012; Baker et al. 2016; Wilkins et al. 2018). Surface observations are sparse, but they offer the means 
to evaluate and constrain surface model output where available. Remotely sensed data are not sparse 
and offer a contiguous field of view, but they may be available only at snapshots during the day, such as 
from polar orbiting satellites, or give only an integrated view of the atmosphere, which may or may not 
reflect what is happening at the surface.  
 
One promising method for characterizing environmental exposure for public health practice and 
epidemiologic research is the integration of remote sensing satellite systems data with monitoring 
network data (Al-Hamdan et al., 2014, 2009). Use of remotely sensed data can help to fill the temporal 
and spatial gaps found with ground-level monitor data. One PM2.5 dataset in this study was created 
using a data fusion geostatistical surfacing algorithm of Al-Hamdan et al. (2009, 2014), which provided 
daily PM2.5 on a 3-km grid for the entire state of California. This algorithm leverages data from the US 
EPA AQS and the NASA MODIS instrument on board the Aqua Earth-orbiting satellite (see Table 2). It 
estimates daily PM2.5 concentrations using a regional spatial surfacing algorithm, which includes 
regression models, B-spline and Inverse Distance Weighted (IDW) smoothing models, a quality control 
procedure for the EPA AQS data, and a bias adjustment procedure for MODIS/Aerosol Optical Depth-
derived PM2.5 data (Al-Hamdan et al., 2014, 2009). The net result is daily estimates of PM2.5 on a 3-km 
grid (surface) (e.g. Figure 3). 
 
Previous work of Al-Hamdan et al. (2014, 2009) were applied to longer term studies such as a 2003 – 
2008 PM2.5 data fusion analysis which was linked with public health data from the REasons for 
Geographic And Racial Differences in Stroke (REGARDS) national cohort study and disseminated to users 
through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for 
Epidemiologic Research (WONDER) system. The CDC WONDER system is one of 10 systems providing 
publicly available PM2.5 exposure datasets designed to support health risk assessment and 
epidemiological studies (Diao et al. 2019). The ready availability of the data inputs, robustness of the 
approach, and demonstrated utility for health analyses motivated us to include this methodology in this 
work.  
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AOD from Step 1; and (3) six meteorological variables: surface wind speed and directions at 10 m, 
surface air temperature at 2 m, relative humidity at 2 m, precipitation rates at surface on a log scale, and 
planetary boundary layer heights from the North American Regional Reanalysis (NARR) data (NCEP 
2005) produced by the National Centers for Environmental Prediction. 
 
Table 2. Data fusion and machine learning approaches. 
Method Modeling 

Dataset 
Resolution Surface 

Data 
Meteorological 
Data 

Remotely Sensed 
Data 

Data Fusion (DF) -- 3-km AQS -- Standard MODIS 
AOD 

Multi-linear 
Regression (MLR) 

WRF-CMAQ-
Baseline 

4-km AirNow WRF, NARR MAIAC AOD 

Generalized 
Boosting (GB) 

WRF-CMAQ-
Baseline 

4-km AirNow WRF, NARR MAIAC AOD 

Random Forest 
(RF) 

WRF-CMAQ-
Baseline 

4-km AirNow WRF, NARR MAIAC AOD 

 
2.6 Quantitative Analysis  
 
Five quantitative analysis metrics were used to evaluate model performance (Table 3). Mean bias 
indicates how a modeled (M) solution tends to over- or underestimate compared to observational (O) 
data. The mean bias can be skewed or overly influenced by outlier/high-value data; therefore, the 
median absolute difference and fractional bias are used to reduce this influence. Pearson correlation (r) 
measures the linear correlation between the modeled and observed data pairs (1: perfect positive 
correlation, -1: perfect negative correlation, 0: no correlation). Root Mean Square Error (RMSE) is the 
standard deviation of the residuals, where residuals are a measure of how far data points are from the 
regression line, and is an indication of how concentrated the data are around the line of best fit. 
 
Table 3. Definitions of quantitative analysis metrics. M = modeled data. O = observed data. 
Metric Equation 
Mean Bias  

( )1

1n
M O

n

−  

Median Absolute Difference ݊ܽ݅݀݁ܯ ௜ܯ|) − ௜ܱ|, ݅ = 1, ݊) 
Fractional Bias  

( )

( )
1

2

1

1

n

M O

M O

n

n

−

+


























 

Pearson Correlation (r) ∑(ܯ ܱ)(ഥܯ− − തܱ)ඥ∑(ܯ ഥ)ଶܯ− ∑(ܱ − തܱ)ଶ 

Root Mean Square Error (RMSE) 
( )M O

n

n

− 2

1  
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2.7 Health Outcome Exposure-Response Function 
 
We assessed regional health impacts from the 2017 Wine Country wildfire smoke using a relative risk 
function for multiple-cause mortality due to PM2.5 exposure, following the method of a smoke impact 
health assessment study by Johnston et al. (2012) as applied by Zou et al. (2019). Using the following 
exposure-response function, we calculated the multiple-cause mortality attributable to PM2.5 exposure 
during the fire smoke pollution episode: 
 
Mortality attributable to PM2.5 exposure = ∑ ௉ெଶ.ହ௡௉ெଶ.ହܦ × ܯ × (ܴܴௌூ(ܲܯଶ.ହ) − 1) 
 
where PM2.5 is daily average surface PM2.5 concentrations (minimum value: 5 μg/m3, maximum value: 
200 μg/m3). Following Johnston et al. (2012), we excluded the grid cells with daily exposure estimates of 
less than 5 μg/m3 and fixed grid cells with exposure estimates larger than 200 μg/m3 to a maximum 
threshold of 200 μg/m3. DPM2.5 is the number of days with daily PM2.5 at certain levels between each 
PM2.5 concentration interval (i.e. each 1-μg/m3 increment between 5 μg/m3 and 200 μg/m3), n is the 
total number of concentration intervals, and M is the county-level daily average number of multiple 
cause of deaths between October and December 2017. RRSI is a relative risk function for multiple-cause 
mortality due to short-term PM2.5 exposure; in this study, we applied a relative risk of 1.1% (95% CI: 0, 
0.26%) per 10 μg/m3 increase of surface PM2.5 concentration as estimated by Johnston et al. 2012 based 
on three studies of wildfire smoke, including Hanninen et al. (2009). This relative risk is consistent with 
the range of estimates of short-term mortality related to urban PM2.5 exposure (Pope and Dockery, 
2006).  
 
We obtained all-cause mortality data from the Centers for Disease Control (CDC) Wide-ranging Online 
Data for Epidemiologic Research (WONDER) online database and demographic data from the 2010 USA 
Census Grids provided by the NASA Socioeconomic Data and Applications Center (SEDAC). We 
downscaled the county-level multiple cause of deaths (M) to the model-grid scale according to the high-
resolution gridded population density data from the 2010 USA Census Grids. Therefore, we were able to 
estimate population exposure risks with both gridded mortality and PM2.5 concentrations at the same 
resolution of the modeling grids (i.e. 3 km, 4 km). 
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3. Results and Discussion 
 
3.1 Fire Emissions 
 
The Wine Country wildfires of October 8-19, 2017 ignited late in the evening of October 8. They quickly 
became devastating to human life and property and caused widespread smoke impacts to millions of 
people. To capture this initial fire activity, we relied on the GOES-16 FDC products which identified the 
first detection at approximately 22:00 PDT. Using these data, we estimated emissions hourly to capture 
the widespread smoke impacts as seen by the MODIS instrument at approximately 11:30 PDT on 
October 9 (Figure 1). The hourly FRE was aggregated across the fire to produce the time profile of 
emissions (Figure 4, dashed line). This method has also been used to simulate the early-morning 
explosive Camp wildfire (O’Neill and Raffuse, 2020). Others have discussed the sensitivity of modeled 
concentrations to the temporal distribution of fire emissions (e.g. Garcia-Menendez et al. 2014; Larkin et 
al. 2012; Wilkins et al. 2018). 
 
Figure 4 highlights the differences between the default (Baseline) and GOES-16 (GTP) temporal 
emissions profiles for the five Wine Country wildfires. The default profile misses the significant activity 
that occurred late in the evening of October 8 and early morning of October 9, delaying emissions for 
several hours. These differences in emission timing propagate through the initial 12-24 hours in the 
smoke transport modeling, but thereafter the Baseline and GTP results are similar. Later in the modeling 
period (October 16-19), the peak of the GTP profile often shifted into the evening hours. Similar 
behavior was found by Li et al. (2019), who noted that with these wind-driven fires, especially in 
California, evening and nighttime fire activity is apparent in the satellite fire activity data. 
 
The fires burned through about 10 fuel types ranging from grasslands and shrublands to heavily forested 
systems. The fuel type has a large effect on the quantity of emissions estimated and can be responsible 
for wide variability in emissions (Prichard et al. 2019, Drury et al. 2014). Fuel heterogeneity and 
variability also mean that acres burned are not necessarily a good proxy for emissions. In the case of the 
Wine Country wildfires, 10% of the total burned area was responsible for 62% of the PM2.5 emissions, 
because it was in heavily forested vegetation. In contrast, shrublands comprised 38% of the total 
acreage burned but caused only about 15% of the total emissions.  
 
Other fire activity occurred throughout the modeling domain, such as crop residue burning in the 
Sacramento and San Joaquin Valleys, prescribed burning operations in the Sierra Nevada Mountains, 
and several small wildfires (Figure 1b, blue dots; Figure 4, gray line shows estimated hourly emissions). 
The estimated emissions from the five Wine Country wildfires totaled 49K tons, exceeding the total 
emissions of 43K tons from all other fires in the state for the modeled time period. 
 
Figure 5 shows smoke transport at 11:00 am PDT as viewed by the GOES-16 satellite and modeled by the 
Baseline and GTP cases. The Baseline and GTP cases are very similar except for the Redwood Valley fire 
(the northernmost of the five wildfires), where GTP had greater PM2.5 concentrations at the surface than 
did Baseline. Figure 5 also illustrates how surface and upper-level transport patterns can differ. The 
satellite views the top of the atmosphere, so we provide a modeled column-integrated PM2.5 estimation 
to compare with the satellite. Overall, the transport patterns line up with many of the visible satellite 
imagery characteristics, with smoke reaching across the Pacific in a more directly eastward direction 
than the more south-flowing surface plume.  
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3.2 WRF-CMAQ Model Simulations 
 
We used observed PM2.5 concentration data measured at the permanent and temporary monitoring 
locations to evaluate the spatial distributions of concentrations from the WRF-CMAQ model simulations. 
We grouped monitor locations into eight regions (Figure 6a) to account for the coastal, central valley 
and mountainous regions of the State. The coastal and coast range monitors were grouped, north to 
south, into the Northern, Wine Country, Bay Area, Central Coast, and Southern California regions. Inland 
monitors were grouped into the Sacramento Valley, San Joaquin Valley, and Sierra regions. To give a 
temporal profile of model performance, the 24-hr average PM2.5 concentrations were averaged together 
by region each day, both for observations and for each of the seven model and analysis datasets (Figure 
6b).  
 
The WRF-CMAQ Baseline and GTP model simulations performed well during the beginning and middle of 
the modeling period (October 8-15) and tended to overestimate PM2.5 concentrations on October 15-17. 
This overestimation is most apparent at the locations close to the fires (Wine Country, Bay Area). The 
later-period overestimation was also apparent in the regions through the interior of the state 
(Sacramento Valley, San Joaquin Valley, Sierras) where the other fires were active. On October 10, the 
WRF-CMAQ simulation results were much higher (by more than a factor of two) at monitoring locations 
in the Sacramento Valley. This was due not only to smoke from the Wine Country fires but also to fires 
that had started on October 9 in the Sierra foothills (Figure 1, fire perimeters in blue) and fires in the 
Sacramento Valley. These fires initially deposited smoke into the Valley, then afternoon west winds 
brought smoke from the Wine Country to the Valley.  
 
Evaluation of the WRF-CMAQ Baseline and GTP model simulations at the permanent and temporary 
monitoring locations shows more similarities than differences. Pearson correlation and RMSE were 
virtually the same at the permanent monitoring locations (approximately 0.65 and 12 µg/m3, 
respectively) and similar at the temporary monitoring locations (less than a 0.05 and 1 µg/m3 difference 
respectively). Baseline performed a bit better with a mean bias of 4 µg/m3 compared to 9.31 µg/m3 
(Tables 4, 5). Overall, both runs were biased high; similar with other CMAQ simulations for fires (e.g., 
Wilkins et al. 2018; Zhou et al. 2018). Although timing of emissions made a difference in the PM2.5 
concentrations modeled in the Wine Country region, using the more detailed GOES-16 -based temporal 
profile did not necessarily improve the modeling results from the Baseline diurnal profile. Other work of 
O’Neill and Raffuse (2020) and Larkin et al. 2012 show that timing of emissions can be important to 
model performance such as at the fire start or when the boundary layer is low. 
 
Finally, Southern California was minimally impacted by these fires, and the NoFires case, while 
seemingly inconsequential, clearly shows how wildfire smoke can dominate as an emission source. This 
underestimation of emissions in the NoFires case illustrates the importance of properly accounting for 
wildfires as an emission source. The WRF-CMAQ mean bias ranged from -7 µg/m3 for the NoFires case to 
~8 µg/m3 for the Baseline & GTP cases. This negative to positive switch of 15 µg/m3 was within the range 
of the ~25 µg/m3 value reported for a California wildfire by Wilkins et al. 2018. Here our overall model 
baseline bias was 0.65 which closely matched the 0.67 value in Wilkins et al. (2018) for a similar area. 
Fractional bias’s and correlations for the Baseline and GTP cases were both improved over results of Zou 
et al. 2019 and Herron-Thorpe et al. 2014. 
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3.3 Data Fusion and Machine Learning 
 
To solve the periodic high bias in the modeled PM2.5 results, we applied the data fusion approach of Al-
Hamdan et al. (2009, 2014) and the three machine-learning-based approaches of Zou et al. (2019). As 
expected, results were much improved, and these four methods compared well to measured PM2.5 
concentrations at the permanent monitoring data locations (Figure 7, Table 4). The DF and RF cases 
performed optimally across the metrics: DF had a Pearson correlation of 0.95, median absolute 
difference of 0.71 µg/m3, and RMSE of 6 µg/m3, and RF had the lowest bias metrics of -0.1 (fractional 
bias) and -4.25 µg/m3 (mean bias). This was much improved from the WRF-CMAQ Baseline and GTP 
modeled Pearson correlation scores of 0.64 and 0.65, RMSE of 12-13 µg/m3, and high bias tendency.  
 
We also had the opportunity to independently evaluate these approaches at the temporary monitoring 
locations, which were not used in deriving the products. The temporary monitors were deployed 
specifically to measure air quality during wildfires and prescribed fire operations at locations that do not 
already have a permanent monitor. During the period of the Wine Country fires, most of the temporary 
monitors were located in the Sierras and Wine Country (Figure 2). The scatterplots in Figure 7 illustrate 
the high bias and departures from the 1:1 line seen in the modeling results at both the permanent (red) 
and temporary monitoring locations (blue). Figure 7 also shows how the high bias was improved upon in 
the data fusion and machine learning results, except in the MLR case, which has a higher scatter and 
RMSE of 12 µg/m3 at the permanent monitoring locations very similar to the WRF-CMAQ results.  
 
All cases tended to perform better at the permanent monitor locations than at the temporary 
monitoring locations, which was expected with the data fusion and machine learning methods, which by 
definition incorporate these data, but less expected in the WRF-CMAQ runs. At the temporary monitor 
locations, Table 5 data show Pearson correlations ranged from 0.29 to 0.50 and RMSE ranged from 22 to 
24 µg/m3 for the two WRF-CMAQ runs with fires and the data fusion and machine learning approaches. 
Median absolute difference data, which tend to be less sensitive to the data extremes (e.g. high PM2.5 
concentrations), ranged from 1-6 µg/m3 at the permanent locations and 5-10 µg/m3 at the temporary 
locations. The only exception to this trend was in terms of bias; the Baseline case performed better at 
the temporary monitor locations than at the permanent monitor locations. Many of these temporary 
monitor locations are in areas of complex terrain such as the Sierras, and the 4-km grid resolution is not 
necessarily a high enough resolution to resolve terrain features and smoke flows through them. Also, 
given that these temporary monitors dominated in the Sierras where there were few permanent 
monitors, the DF approach did not have a chance to calibrate to the area.  
 
Figure 8 illustrates daily model performance, and we see how the overestimation bias in the WRF-CMAQ 
model simulations (Baseline, GTP) occurred in the later modeling period (October 16-18). Overall, the 
data fusion and machine learning results minimized bias well at both the temporary and permanent 
monitor locations. RMSE was consistently similar across all cases at the temporary monitor locations, 
while at the permanent monitor locations the DF case performed best. Of the data fusion and machine 
learning approaches, the RF case performed the most optimally across most metrics, with lowest or 
second-lowest RMSE, fractional bias, mean bias, and median absolute difference, and second-best 
Pearson correlations (0.86 and 0.49 at the permanent and temporary monitors, respectively). Zou et al. 
2019 similarly found optimal performance with the RF case. Further, our machine learning results here 
were similar (in terms of fractional bias) and improved in terms of correlation and RMSE as compared to 
Zou et al. 2019. Cleland et al. (2020) in related work used Constant Air Quality Model Performance and 
Bayesian Maximum Entropy (BME) methods to estimate surface PM2.5 concentrations for this same 
wildfire period with a correlation of 0.71. They incorporated the temporary monitoring data into their 
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Table 5. Temporary monitor location analysis. Numbers in bold and italics are the best and second-best 
model performer respectively. 406 data points (mean and standard deviation) or data pairs (other 
metrics) for all cases. 
Model Mean 

(µg/m3) 
Standard 
Deviation 
(µg/m3) 

Pearson 
Correlation 

RMSE 
(µg/m3)

Fractional 
Bias 

Mean Bias 
(µg/m3) 

Median Absolute 
Difference 
(µg/m3) 

NoFires 5.59 3.98 -0.05 24.87 -0.61 -17.16 9.85
Baseline 26.84 44.16 0.34 22.93 0.08 4.10 6.80
GTP 32.06 69.81 0.29 23.58 0.17 9.31 6.95
DF 11.98 7.00 0.38 23.23 -0.31 -10.76 4.96
GB 18.24 15.86 0.50 21.62 -0.11 -4.51 5.11
MLR 17.55 18.59 0.35 22.92 -0.13 -5.19 4.75
RF 18.49 15.55 0.49 21.74 -0.10 -4.25 4.85
Measured 22.75 24.84  
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3.4 Air Quality and Health Impact Assessment 
 
We used two approaches to investigate health impacts from these wildfires. The first approach 
compares surface 24-hr average PM2.5 concentrations with the NAAQS and bins the data by AQI 
category. Figure 9 shows the modeled minus monitor bias for each of the seven datasets in this analysis 
by AQI category and the number of observations in each category. The data fusion and machine learning 
methods (DF, GB, MLR, RF) all tended to underestimate PM2.5 concentrations in the Unhealthy/Very 
Unhealthy categories, and in general their data had much less variability than the WRF-CMAQ modeling 
approaches. For the highest health impact AQI categories, the two WRF-CMAQ simulations and the DF 
data fusion case had median Unhealthy bias near zero, while the other cases were biased less than zero. 
The GTP was the only case where the bias was not less than zero for the Very Unhealthy category. These 
biases can be important to smoke forecasters, because it is more important to not miss an event (such 
as an Unhealthy or worse air quality condition) than to forecast an event that does not materialize 
(Ainslie et al. 2020). Approximately 10% of the monitor-days measured exceedances of the NAAQS 
standard of 35 µg/m3. The Very Unhealthy data points were in Napa and the southern Sierras where the 
temporary monitors were located. These temporary monitors tend to be in small, rural communities, 
and compared to the permanent monitoring networks, the temporary sites typically have much higher 
concentrations of PM2.5 and more days where PM2.5 exceeds the NAAQS standard of 35 µg/m3 (Larkin 
2019). 
 
Finally, we used the approach of Zou et al. (2019), who applied the relative risk function for multiple-
cause mortality due to PM2.5 exposure of Johnston et al. (2012) to evaluate health impacts from these 
wildfires for October 8-20, 2017. Figure 10a shows the premature deaths related to PM2.5 across the 
region (shown in blue) estimated from the NoFires WRF-CMAQ modeling case, and Figure 10b shows the 
additional mortality estimated from the RF case. Without the wildland fires, mortality due to PM2.5 
exposure was estimated as 44 deaths (95% confidence interval: 0, 105). Including the Wine Country 
wildfires and other smaller wildland fires increased the estimated mortality to 83 (95% confidence 
interval: 0, 196), almost doubling the number of deaths. This illustrates the profound effect that even a 
12-day exposure to wildfire smoke can have on human health. It should be noted that a mortality of 83 
is within the 95% confidence interval of the NoFires case and thus a possible outcome for that case as 
well. Spatially across the State (Figure 10), the additional mortality was in the highly populated Bay Area, 
Wine Country, and Sacramento Valley regions, where the highest smoke impacts were measured. 
Mortality also spread into more lightly populated areas of Northern California and the Tahoe-Reno-
Carson area at the California/Nevada border; an area that had not showed mortality in the NoFires case. 
Mortality due to PM2.5 exposure in the San Joaquin Valley was mostly attributable to the other non-fires 
case sources. 
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4. Summary and Conclusions 
 
We were motivated to conduct this study for several reasons. Smoke impacts from large wildfires are 
mounting, and the projection is for more such events across fire-prone regions in the future (Goss et al., 
2020; Zou et al., 2020) as the one experienced in October 2017 in Northern California (this study), and 
subsequently in 2018 and 2020. Further, the evidence is growing about the health impacts from these 
events (Fann et al. 2018; Gan et al. 2017; Liu et al. 2017; Reid et al. 2016b; Rappold et al. 2011, 2017). 
These events are difficult to simulate, which is evident in studies such as Diao et al. (2019), who 
highlighted discrepancies among frequently-used PM2.5 datasets in health studies and identified the 
need to conduct inter-comparison studies on PM2.5 estimates and to contrast the methods used to 
derive them. Therefore, we simulated air quality conditions using a suite of remotely sensed data, 
surface observational data, chemical transport modeling, and data fusion and machine learning methods 
to arrive at datasets useful to air quality and health impact analyses. We then estimated the health 
impacts from widespread smoke impacts during wildfires in October 8-20, 2017, in Northern California, 
when over 7 million people were exposed to Unhealthy and in some cases Very Unhealthy air quality 
conditions. Total estimated regional mortality attributable to PM2.5 exposure during the smoke episode 
was 83 (95% confidence interval: 0, 196) and 47% of these deaths were due to the wildland fire smoke. 
The increase in mortality was most evident in the San Francisco Bay Area and Sacramento Valley 
regions, which was expected because of the combined level of smoke impacts and population density. 
Results also highlighted that mortality due to PM2.5 exposure in the San Joaquin Valley was mostly 
attributable to sources other than the Wine Country wildfires, and that mortality due to PM2.5 exposure 
was higher in small rural communities that otherwise did not register in the NoFires results (e.g. north 
and northeast portions of the model domain). 
 
Several different methods were evaluated. Three cases were WRF-CMAQ model runs, then the optimally 
performing WRF-CMAQ case was applied in three machine learning methods (Zou et al. 2019). The final 
case was a data fusion case which used surface observations and MODIS AOD according to the method 
of Al-Hamdan et al. (2009, 2014). We had several unique opportunities. First, we estimated fire 
emissions from a full suite of MODIS, VIIRS, and GOES-16 fire detection data. In particular we used the 
GOES-16 data to estimate the timing of emissions hourly for the five large Wine Country wildfires. 
Improving the hourly timing of emissions did not necessarily improve the overall modeling results; 
however, this approach was key to simulating the initial 12-hr explosive fire activity and smoke impacts, 
similar to what O’Neill and Raffuse (2020) found with the 2018 Camp wildfire. These results 
demonstrate that more work is necessary to better utilize the high time resolution satellite data and 
understand how to scale fire activity to emissions. Related work of Li et al. (2019) analyzed fire activity 
temporal profiles with polar orbiting satellites and previous-generation geostationary satellites. They 
found similar results as the default temporal profile used here, but with an extended tail of fire activity 
into the evening/nighttime hours for western US forests. This result also illustrates how correcting one 
component in the smoke modeling calculation stream may not result in overall system improvement, 
due to compensating issues with other components, such as natural fuel heterogeneity (Drury et al. 
2014), fuel consumption algorithms (Prichard et al. 2019), emission factors (Urbanski 2014, Prichard et 
al. 2020), plume rise and the vertical allocation of emissions (Mallia et al. 2018; Wilkins et al. 2020), and 
interaction with the changing/diurnal boundary layer (Larkin et al. 2012).  
 
We also had the opportunity to evaluate all results with both permanent monitoring data and 
temporary monitors deployed by the US Forest Service and California Air Resources Board specifically 
for wildfires. The data fusion and machine learning results all performed much better at the permanent 
monitoring locations than the WRF-CMAQ results, a motivating factor for doing these analyses. At the 
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temporary monitor locations, all seven datasets performed much more similarly; however, three of the 
machine learning cases (RF, MLR, and GB) slightly out-performed the WRF-CMAQ Baseline and GTP and 
data fusion DF cases. The data fusion and machine learning results had a low bias and WRF-CMAQ 
results had a high bias at both the permanent and temporary monitor locations, and those biases were 
more pronounced at the temporary monitor locations. Overall, all cases tended to perform better at the 
permanent monitor locations than at the temporary monitoring locations, which was expected with the 
data fusion and machine learning methods but less expected in the WRF-CMAQ runs. 
 
The bias in the WRF-CMAQ model simulations highlights the need for further research to quantify the 
uncertainties in emission estimates and dispersion/chemistry modeling. Although this study included 
seven model and analysis datasets, a larger ensemble study with 112 members for the 2018 Camp 
Wildfire event, also in California, revealed a factor of 10 difference in satellite-based emission estimates 
and up to a factor of 1,000 difference in predicted surface concentrations of PM2.5 during large wildfires 
(Li et al., 2020). Besides emissions, it was found that meteorology fields, including winds, pressure and 
planetary boundary layer height, and treatment of smoke plume rise all played important roles in 
predicting wildfire PM2.5 concentrations. Work of Garcia-Menendez (2013) also highlights the 
importance of wind field on smoke modeling results. The results presented in this work, along with prior 
studies (e.g., Wilkins et al., 2020; Li et al., 2020) suggest that reliable wildfire smoke forecasting is not 
only extremely challenging, but it also requires a holistic approach that considers all controlling factors 
involved in shaping air quality in the downwind areas.  
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Implications 
 
Large wildfires in the United States and in particular California are becoming increasingly 
common. Associated with these large wildfires are air quality and health impact to millions of 
people from the smoke. We simulated air quality conditions using a suite of remotely-sensed 
data, surface observational data, chemical transport modeling, one data fusion, and three machine 
learning methods to arrive at datasets useful to air quality and health impact analyses from the  
October 2017 Northern California wildfires. Temporary monitors deployed for the wildfires 
provided an important model evaluation dataset. Total estimated regional mortality attributable 
to PM2.5 exposure during the smoke episode was 83 (95% confidence interval: 0, 196) with 47% 
of these deaths attributable to the wildland fire smoke. This illustrates the profound effect that 
even a 12-day exposure to wildland fire smoke can have on human health. 	 	
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Figure 1. (a) Visible satellite imagery from the VIIRS instrument aboard Suomi-NPP and fire hot spot 
detections (red) from the VIIRS instrument aboard the Suomi-NPP satellite for October 9, 2017. The 
image is downloaded from NASA Worldview website. (b) Fire perimeters of the Atlas, Tubbs, Nuns, 
Redwood Valley, and Pocket wildfires (red). Other prescribed fires and wildfires occurring during the Oct 
8-20, 2017 time period are shown in blue. Fire perimeters are from the GEOMAC system and hot spot 
locations are from the MODIS and VIIRS instruments aboard the Terra, Aqua and SUOMI-NPP 
satellites. 
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Figure 2. Locations of PM2.5 air quality monitors. Circles are permanent monitors from the EPA AQS 
System. Triangles are temporary monitors deployed for wildfires. The circles and triangles are color-
coded by the Air Quality Index by the maximum measured 24-hr average PM2.5 value during the October 
6-20, 2017 time period. 

 
Figure 3. Illustration of the components involved in data fusion. (a) Surface PM2.5 monitoring data from 
EPA AQS and (b) MODIS AOD merged to create (c) a surface of PM2.5 concentrations on a 3-km grid for 
October 9, 2017.  
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Figure 4. Hourly PM2.5 emissions from wildfires and prescribed fires in California, October 8 - 20, 2017. 
Black line (Baseline): diurnal profile of the emissions from the five Wine Country wildfires, calculated 
using BSF and allocated hourly based on the default profile in CMAQ. Dashed line (GTP): hourly 
emissions from the five Wine Country wildfires, calculated using BSF and allocated hourly based on 
GOES-16 FDC data. Gray line (Other Fires): hourly emissions from all other fires, calculated using BSF 
and allocated hourly based on the default profile in CMAQ.  
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Figure 5. Panel of visible satellite imagery and WRF-CMAQ runs at 11:00 am PDT October 9, 2017. (a) 
Visible GOES-16 satellite imagery and surface 24-hr average PM2.5 concentrations (circles) from EPA 
AirNowTech color-coded by air quality index (Figure: NOAA AerosolWatch) (b) the Baseline total 
column PM2.5, (c) the Baseline surface 1-hr average PM2.5 concentration, and (d) the GTP surface 1-hr 
average PM2.5 concentrations (same scale of PM2.5 concentrations as in 5c). ACCEPTED M
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Figure 6. (a) Locations of PM2.5 monitors grouped by region. (b) Time series comparison of measured and 
modeled 24-hr average PM2.5 concentrations by region. Black lines: observations; colored lines: WRF-
CMAQ model simulations (NoFires, Baseline, and GTP), data fusion (DF), and three machine-learning 
analyses (GB, MLR, and RF). See key at top. 
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Figure 7. Comparison of measured (x-axis) and modeled (y-axis) 24-hr average PM2.5 concentrations at 
all monitoring locations. Red circles: permanent monitors; blue circles: temporary monitors. The top 
panels are the three WRF-CMAQ modeling results and the four bottom panels are the data fusion (DF) 
and machine learning (MLR, GB, and RF) results.  
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Figure 8. Daily model performance at the permanent (red) and temporary (blue) monitor locations in 
terms of a) root mean square error (RMSE) and b) mean bias. Vertical blue lines indicate October 8, 
2017, the start of the wildfires. 
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Figure 9. PM2.5 bias by Air Quality Index (AQI) category. The numbers at the bottom of each panel are 
the number of model-monitor pairs in the AQI category. 
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Figure 10. Multiple-cause mortality attributable to PM2.5 exposure using a relative risk of 1.1% (95% CI: 
0, 0.26%) per 10 μg/m3 increase of surface PM2.5 concentration (Johnston et al. 2012). (a) Mortality 
related to PM2.5 exposure from the NoFires case and (b) the additional mortality due to smoke from the 
wildland fires (the five Wine Country wildfires and other smaller wildland fires) from the RF case. 	
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