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Abstract: The summer of 2018 saw intense smoke impacts on the eastern side of the Sierra Nevada in
California, which have been anecdotally ascribed to the closest wildfire, the Lions Fire. We examined
the role of the Lions Fire and four other, simultaneous large wildfires on smoke impacts across the
Eastern Sierra. Our approach combined GOES-16 satellite data with fire activity, fuel loading, and fuel
type, to allocate emissions diurnally per hour for each fire. To apportion smoke impacts at key
monitoring sites, dispersion was modeled via the BlueSky framework, and daily averaged PM; 5
concentrations were estimated from 23 July to 29 August 2018. To estimate the relative impact of each
contributing wildfire at six Eastern Sierra monitoring sites, we layered the multiple modeled impacts,
calculated their proportion from each fire and at each site, and used that proportion to apportion
smoke from each fire’s monitored impact. The combined smoke concentration due to multiple large,
concurrent, but more distant fires was on many days substantially higher than the concentration
attributable to the Lions Fire, which was much closer to the air quality monitoring sites. These daily
apportionments provide an objective basis for understanding the extent to which local versus regional
fire affected Eastern Sierra Nevada air quality. The results corroborate previous case studies showing
that slower-growing fires, when and where managed for resource objectives, can create more transient
and manageable air quality impacts relative to larger fires where such management strategies are not
used or feasible.

Keywords: air quality management; source apportionment; GOES-16 remote sensing; diurnal
emissions profile; Eastern Sierra Nevada

1. Introduction

In the United States, air quality has improved dramatically over the past four decades because
of federal rules limiting emissions [1]. However, wildfires contribute to high levels of air pollution
and visibility impairment in the West, threatening to undo these air quality improvements [2].
Furthermore, they are expected to increase in frequency, size, and severity as the climate continues to
change [3,4]. Smoke from wildland fires is a complex mixture that often varies spatially and temporally,
and fine particulate matter (PM, 5) has been identified as the best single indicator of human health
impacts [5-7]. Epidemiological studies have associated wildland fire-specific PM, 5 with an increased
risk of respiratory morbidity in the elderly subpopulation in the West [8]. Given the association
between wildland fire smoke and public health [9,10], land management and regulatory agencies
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have increasingly important roles in maintaining both healthy ecological systems and human health,
requiring a clear understanding of the impact of fire management on air quality.

A key challenge in aligning fire management strategies with public health is to assess tradeoffs
among a suite of fire management approaches for unplanned ignitions, which include full suppression,
confine/contain strategies, manage with burning, and monitoring. These approaches are not mutually
exclusive and are sometimes used in tandem at specific points. Recent research suggests that ecologically
beneficial fire can be a critical tool for mitigating extreme wildfires [11], and that full suppression fire
tactics do not reduce smoke exposure [12]. Although consensus is growing that ecologically beneficial
fire reduces long-term smoke impacts compared to full suppression only tactics, there is debate about
the efficacy for air quality benefits of adding fire to an existing unplanned ignition under favorable
dispersion conditions; this is colloquially known as the ‘push—pull’ strategy. Long et al., 2017 [13]
found that “push—pull’ tactics can reduce exposure to smoke. However, a case study of two comparable
fires, one with a high level of manipulation and one without, found a reduction in emissions from
the manipulation, but the manipulation did not subsequently limit smoke exposure [14]. Air quality
impacts from smoke can be assessed through compliance standards; Schweizer et al., 2017 used the U.S.
Environmental Protection Agency (EPA) National Ambient Air Quality Standards (NAAQS) 24 h PM; 5
standard (35 pg/m?) to provide a broad evaluation of smoke impacts when comparing ecologically
beneficial fire versus other fire management strategies [15,16].

The summer of 2018 saw some of the most intense and longest-lasting smoke impacts ever observed
on the eastern side of the Sierra Nevada in California (Figure 1), with many days in the Unhealthy and
Very Unhealthy EPA Air Quality Index (AQI) categories. These impacts were anecdotally ascribed to
the most proximal wildfire, the Lions Fire. However, there were several simultaneous, large wildfires
burning in heavy fuels in the Sierra Nevada to the north, south, and west of regional air quality
monitoring sites (Figure 2). For some periods of summer 2018, the Lions Fire was managed for multiple
objectives, including resource benefits, while full suppression tactics were mainly used for other
large California wildfires. For many days, visible satellite imagery showed that smoke emissions and
transport from some of the more distant fires were potentially influencing these Eastern Sierra air
quality monitoring sites (Figure 1).

Emission calculations are a first step in identifying the potential influence of smoke; however,
simply calculating emissions does not indicate the relative contribution of one fire versus another,
because dispersion often matters more than absolute emissions in determining concentration at a
given site [13]. Furthermore, the fate and transport of emitted pollutants from a given fire often varies
widely on a daily or even hourly basis, requiring a high temporal resolution estimate of both emissions
and dispersion efficiency. The Eastern Sierra has both a mountain barrier and the steepest orographic
gradient in the contiguous United States [17]. Generally, thermally driven valley winds blow up-valley
during the daytime and down-valley during the nighttime, with prevailing northwesterly ground-level
winds [18]. Saide et al., 2015 [19] found that nocturnal emissions are underestimated compared to
typical diurnal profiles in most modeling systems, especially in California [20,21].

The purpose of this study is to examine the relative contributions, or apportionments, of multiple
simultaneous wildfires to air quality in Eastern Sierra, California, in the summer of 2018, as measured
by magnitude of PM, 5 by day at several monitoring sites. This study utilizes novel remote sensing
techniques to define fire activity and allocate emissions diurnally to then explicitly model wildland fire
smoke transport and dispersion. This technique provides a useful method to predict and evaluate the
tradeoffs between fire emissions and fuel management strategies. The improved emission estimates
will be applied to a relevant case study, where wildland fire PM; 5 impacts are estimated from several
simultaneous sources using in situ monitoring data (Figure 2). A detailed analysis grounded in a case
study within a single region could provide useful insights for broader operational smoke management
strategies. We hypothesized that, although the Lions Fire was the closest fire to the Eastern Sierra
monitoring sites, multiple fires also affected monitored air quality.
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Figure 1. Visible smoke plume from the GOES-16 satellite at 2347 UTC and fire radiative power from
the VIIRS instrument aboard Suomi-NPP on August 4 2018. Image from NOAA AerosolWatch.
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Figure 2. Location of wildland fires greater than 12,000 acres in California in 2018. Red fill: Fires
included in this study; green diamonds: The six air quality monitoring sites. Source: United States
Department of Agriculture, Forest Service.

2. Methods

Unprecedented PM; 5 concentrations were observed in the eastern Sierra Nevada in July and
August 2018. Several permanent and temporary air quality monitoring stations recorded multiple
days at or above Unhealthy levels (>55.5 pg/m?), as measured by the 24 h EPA AQI. Monitored data
were analyzed from 23 July through 29 August 2018to coincide with the most severe PM, 5 episodes
(Figure 3). Smoke impacts were assessed on a relative basis between monitors and between fires
throughout the study period, as well as on a subset of consecutive high-impact days to assess both
cumulative contributions and contributions on the worst air quality days. The relative apportionment
of smoke concentrations approach used in this study is not intended nor appropriate for regulatory
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compliance purposes for several reasons: comparing between the Federal Reference Method (FRM) and
non-FRM monitors and using modeled data present challenges to directly assessing smoke impacts in
the context of NAAQS. However, to help assess the relative smoke impacts between fires and between
monitoring sites, we defined a Threshold of Concern (TOC) as a modeled value of > 35 pg/m?.
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Figure 3. Estimated total emissions (PM; 5 total tons per wildfire) and the active time of fire spread
per fire between 4 June and 3 December 2018, for 18 fires. Fires included in this study have red lines.
The study period (time period in which smoke apportionment modeling was performed) is shaded in

light blue.

The study area included large wildland fires throughout California and used air quality monitors
within Mono and Inyo Counties, California, in Eastern Sierra. Hourly and daily average concentrations
of PM; 5 were downloaded in R 4.0.0 [22] using the PWFSLSmoke Package [23], which compiles air
quality monitoring data from a combination of sources. Data were available from 12 permanent
and temporary monitors within Mono and Inyo Counties. Six monitors were excluded from
analysis because of insufficient data during the study dates. Six monitoring sites were selected
for analysis: Bishop NCORE (Site ID: 060270002), Bishop Paiute Tribe (Site ID: 060271023), Crowley
Lake (Site ID: lon_.118.742_lat_37.567_usfs.1055), June Lake (Site ID: MMGBU1000_01), Lee Vining
(Site ID: 060510005), and Mammoth (Site ID: 060510001).

Five fires—the Lions, Ferguson, Mendocino Complex, Cart, and Donnell Fires—were selected
for analysis, because their fire activity coincided with the observed period of high levels of PM; 5
monitored in the study area. Fire activity and emissions data were obtained from an existing dataset
that used GOES-16 satellite fire detections [24] and the BlueSky smoke modeling framework (BSF; [25]).

The GOES-16 5-minute Fire Detection and Characterization (FDC) product was used to report
both individual fire detections per pixel and estimated emissions. The FDC provides observations of
Fire Radiative Power (FRP) at 5-minute intervals at a 2 km resolution at nadir (3—4 km in California).
FRP estimates were aggregated to produce hourly fire activity per pixel. Daily emission estimates
were calculated for each pixel location using BSF, which relies on mapped fuel loadings from the Fuel
Characteristic Classification System (FCCS; [26]) and the CONSUME fuel consumption model [27].
Daily acres burned was calculated using the final GEOMAC fire perimeter scaled to a daily basis by
the GOES-16 fire activity. These daily estimates of per-pixel fire emissions were then allocated to the
hourly time profile derived from the GOES-16 FDC product. This approach had been applied to the
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eighteen 2018 California wildfires of more than 12,000 acres and is best suited to larger wildfires due to
the spatial resolution of the FDC product. For fires of less than 12,000 acres, we used MODIS and VIIRS
fire detection data [28]. The Lions Fire burned approximately 13,000 acres; therefore, we used both
approaches: we investigated the VIIRS/MODIS dataset, and we augmented the GOES-16 detections
with fire locations from MODIS/VIIRS on days that GOES-16 did not detect fire activity.

Using these data, we modeled near-surface 1 h PM; 5 concentration (ug/m3 ) using the HYSPLIT [29]
model at a 2 km resolution using Weather Research Forecast (WRF) meteorology from the Desert
Research Institute (DRI) operational meteorological forecasting system [30]. Dispersion was modeled
for each of the five fires, and 24 h average PM, 5 concentration was recorded from the second-highest
pixel within a 5 km radius of each of the six monitoring sites. The smoke contribution per fire
was determined by taking the modeled fractions and multiplying by the observed PM; 5 value.
Smoke model performance in terms of the Pearson correlation ranged from 0.34 at Crowley Lake to
0.72 at Mammoth, similar to results of other studies [31,32].

3. Results

Figure 4 and Table 1 show the PM, 5 apportionment per fire per day at the six Eastern Sierra
Nevada monitoring sites. Overall, the six Eastern Sierra air quality monitoring sites showed similar
patterns in source apportionment and magnitudes of PM; 5 throughout the study period. Bishop
NCORE had the single highest 24 h monitored PM; 5 concentration and Lee Vining had the most
prolonged smoke episode: 2 August through 6 August showed monitored PM, 5 concentrations at or
exceeding the Unhealthy AQI. Both recordings were driven by the combined influence of multiple
distant fires, not the Lions Fire, which was the closest. The Lions Fire contributed relatively less to
monitored PM; 5 concentrations than the combined influence of the other four fires, and its contribution
was most notable at the Mammoth and June Lake monitoring sites. The Donnell Fire had its most
significant PM, 5 impact across all monitoring stations on only one day (8 June 2018).

A. Bishop NCORE B. Bishop Paiute Tribe

D. June Lake

F. Mammoth

. Lmns . Ferguson . Donnell D MendocinoComplex . Carr

Figure 4. Apportionment of measured 24 h average PM, 5 concentration, 23 July—29 August 2018
by fire (Lions, Ferguson, Donnell, Mendocino Complex, Carr) at each of the six monitoring sites
(Bishop NCORE, Bishop Paiute Tribe, Crowley Lake, June Lake, Lee Vining, Mammoth). Background
color indicates U.S. Environmental Protection Agency (EPA) Air Quality Index (AQI) category; Green:
Good, Yellow: Moderate, Orange: Unhealthy for Sensitive Groups, Red: Unhealthy, and Purple:
Very Unhealthy.
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Table 1. Comparisons of modeled smoke apportionment and impacts per air quality monitoring site
and per fire. Individual data points are rounded to the nearest whole number.

- . . Bisho Bisho Crowle une Lee
Monitoring Sites All Sites NC ORFI’E Paiute Trpibe Lake y {ake Vining Mammoth
Days of Quality Data * 38 37 24 38 38 31
Mean PM; 5 (ug/m®) during study period (23 July-29 August)
Lions 11 9 6 7 19 12 10
Ferguson 12 15 9 10 14 21 4
Fire Name Donne.ll 3 3 2 4 1 5 2
Mendocino 5 6 5 10 3 7 3
Carr 1 1 1 1 1 2 1
All Fires ** 30 34 22 19 37 46 19
Mean PM 5 (ug/m?®) during highest impact period (2-4 August)
Lions 13 26 14 13 19 5 NA
Ferguson 81 112 62 94 110 111 NA
Fire Name Donnell 0 0 0 0 0 0 NA
Mendocino 14 17 23 13 7 24 NA
Carr 2 1 1 5 1 6 NA
All Fires ** 124 155 101 83 134 146 NA
Days of PMy 5 (1g/m®) 24 h Exceeding TOC (>35 nug/m3)
Lions 16 3 1 0 8 2 2
Ferguson 19 4 3 2 4 6 0
Fire Name Donnell 6 1 0 1 1 2 1
Mendocino 0 0 0 0 0 0 0
Carr 0 0 0 0 0 0 0
Mean PM; 5 (ug/m?) during TOC-days (>35 pg/m?)
Lions 44 37 35 NA 45 40 59
Ferguson 93 99 69 94 92 100 NA
Fire Name Donnell 48 45 NA 47 40 62 36
Mendocino NA NA NA NA NA NA NA
Carr NA NA NA NA NA NA NA

* Number of days during the study period in which PM, 5 24 h average air quality monitoring data passed EPA
y g y P g q y g P
completeness criteria. ** Mean PM, 5 concentration (ug/ms) for summation of all five fires included in this study.

Modeled source apportionment of total monitored PM, 5 throughout the study period was
attributed mainly to a combined influence of the Ferguson (38%), Lions (33%), and Mendocino Complex
(17%) fires. The Carr and Donnell fires together minimally contributed to total monitored smoke
throughout the study period (combined less than 15%). The Lions Fire had 16 site-days where modeled
data apportioned PM, 5 concentrations at or above the TOC, referred to as TOC-days, with half of
these site-days occurring at the June Lake monitoring site. All other fires individually contributed to
25 TOC-days (Ferguson 19 site-days, Donnell 6 site-days). The Lions Fire TOC-days were mainly in
the Unhealthy for Sensitive Groups (USG, average PM, 5 on TOC-days 43.9 pg/m?) range, while the
Ferguson Fire TOC-days were mainly in the Unhealthy (average PM, 5 on TOC-days 92.5 pg/m?) range.
The Lions Fire TOC-days occurred intermittently throughout the study period while the Ferguson
exceedances were concentrated during the high impact smoke period in early August. Although the
Carr Fire alone never contributed to a TOC-day, the Donnell Fire alone would have exceeded the TOC
on six separate occasions, with the highest single day 24 h average PMj, 5 concentration of 80 pg/m? at
Lee Vining. However, outside of the 6 August impacts from the Donnell Fire, neither the Carr nor
Donnell fires were large sources of wildland fire PM; 5 in the Eastern Sierras.

Monitoring data showed similar patterns of PM; 5 concentrations across all six Eastern Sierra sites.
The highest observed 24 h average PM; 5 concentration occurred on 3 August for four of the six sites;
of the four sites on 3 August, the Bishop NCORE monitor had the highest monitored concentration
(~250 pg/m?), and the modeling apportioned that mainly to the Ferguson Fire (182 ug/m3), with smaller
contributions from the Lions (39 pg/m?®) and Mendocino Complex fires (19 pug/m?). Also on this day,
emissions from the Ferguson and Lions fires each resulted in PM; 5 concentrations greater than the
modeled TOC. The June Lake monitor had the highest number of TOC-days, 13; the average daily
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PMS, 5 contribution per fire during these smoke episodes was mainly from the Ferguson (92 pg/m?),
Lions (45 pg/m?), and Donnell (40 pg/m3) Fires. Mammoth, the monitoring site closest to the Lions
Fire (~15 km), missed several key days of data. However, the Lions Fire was the primary source
of fire PMj, 5 throughout the study period (average daily PM; 5 contribution 10 pug/m?), although its
contribution exceeded the TOC on only one day. June Lake, the second-closest monitoring site to the
Lions Fire (~24 km), showed consistent impacts from both the Lions (19 pg/m? daily average PM, 5
contribution) and Ferguson (14 pg/m? daily average PM; 5 contribution) Fires.

The highest monitored smoke impacts across all six air quality monitors occurred during
2—4 August 2018, where five of the six monitors reported PM, 5 concentrations in the Very Unhealthy
AQI range. The Mammoth monitoring site missed several days of data from this key early August
smoke episode period. During this period of high-impact smoke concentrations, the Ferguson Fire
contributed the highest average apportionment of PM; 5 across all Eastern Sierra monitors (80 ug/m?’),
followed by the Mendocino Complex Fire (14 ug/m3) and the Lions Fire (13 pg/m?). The Lions Fire
alone only had one TOC-day (June Lake, 1 August); on the other hand, the Ferguson Fire alone had 12
TOC-days during this high-impact period. During this period, the monitors closest to the Lions Fire
were not the most affected by the fire: the highest average PM, 5 contribution across all Eastern Sierra
monitoring sites was apportioned to the Ferguson Fire.

4. Discussion

This analysis explored the spatial and temporal patterns in monitored PM; 5 concentrations at six
air quality monitoring sites in Eastern Sierra, California, and apportioned smoke impacts between five
simultaneous large wildfires. The results support our hypothesis that several large fires contributed
to the poor air quality according to the Eastern Sierra monitors. The pattern of relatively more
transient smoke impacts from the Lions Fire, which at times was managed for resource benefit, concurs
with previous studies of smoke impacts when resource objectives are the primary fire management
strategies [13,14]. Such strategies align with air quality goals, because resource objectives require the
kind of moderate fire behavior and slow growth that limit daily emissions, and limited daily emissions
often result in limited smoke impacts downwind in all but the most direct or unfavorable dispersion
scenarios. Although relatively more transient when viewed across all Eastern Sierra monitoring sites
within the study period, the Lions Fire impacts were more intense at the June Lake site (one of the sites
closest to the fire). This is important for future operational fire and smoke management activities in the
Lions Fire vicinity.

This study reinforces that neither proximity to fires nor emissions from fires are alone sufficient
to understand and predict smoke impacts. Dispersion and modeling, especially in the context of
multiple, interacting fire plumes, are also necessary [13] to disentangle sources and their relative
importance. For example, the fire located farthest from the Eastern Sierra air quality monitoring sites
(Carr) did not significantly contribute to the smoke concentrations (it alone never exceeded NAAQS).
However, the Mendocino Complex Fire, the second furthest fire from the Eastern Sierra monitoring
sites, contributed near equal proportions of smoke as the Lions Fire during the highest-impact days,
even though the estimated emissions for Lions Fire were nearly an order of magnitude lower.

The strengths of this study include (1) the use of in situ air monitoring data representative of the
region and (2) the strength of the relationship between monitored and modeled emissions. Remotely
sensed fire detections provided a temporally precise diurnal allocation of emissions, and combined
with dispersion modeling, created a hybrid approach for improving apportionment of PM; 5 across
multiple fires. These results, however, are subject to several limitations, most notably, the closest
monitor to the Lions Fire, the Mammoth site, lacked data from several key dates during the period of
greatest smoke impact, and the incomplete data do not allow a robust analysis of smoke apportionment.
Although this incomplete dataset apportions the majority of PM; 5 to the Lions Fire, we speculate
that, if the Mammoth monitor mirrored the patterns observed across the other five monitoring sites,
the Ferguson and Mendocino Complex Fires would probably have been influencers. This does not
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change our conclusion that the Lions Fire had less of an impact on Eastern Sierra air quality than did
the combined influence of multiple distant fires. Additionally, although the Lions Fire smoke impacts
are typical of other resource objective fires, further assessments of the impacts of resource objective
fires can help this paper’s results, which are specific to a case study, become more widely applicable
outside of the Eastern Sierra Nevada.

The modeled emissions tended to underestimate PM, 5 relative to the monitored values, probably
because of fuel heterogeneity [33], plume injection height [34], and wind field bias/errors [35].
Uncertainty and natural variability in all these components ranged from a factor of two to an order
of magnitude impact on modeled PM; 5 concentrations. We adjusted (increased) modeled PM; 5
values to account for other background sources of PM; 5 (e.g., dust, mobile, and residential sources) by
7 ug/m3; this yielded an optimal comparison between modeled and observed data, with 65% of the
modeled/observed data pairs within a factor of two of each other. The remaining 35% of differences
were approximately equally split between model under- and overestimation. Several efforts have
been made to improve source attribution of PM, 5 and wildland fire PM; 5 [36], using photochemical
modeling approaches. Huang et al., 2020 [37] combined CMAQ with HYSPLIT dispersion modeling to
apportion smoke impacts in a computationally efficient manner. However, their focus on prescribed
burn diurnal profiles may not be applicable to unplanned ignitions.

5. Conclusions

This study used novel satellite-based methods to objectively resolve and apportion impacts from
multiple interacting fire plumes during a particularly intense period of smoke impacts in Eastern
Sierra, California, in the summer of 2018. We explored the spatial and temporal patterns in monitored
PMj, 5 concentrations at six Eastern Sierra air quality monitoring sites. We apportioned impacts at
each of those sites from five fires, using a combination of remote sensing and modeling tools in the
BlueSky Framework. Although the Lions Fire was closest to the regional air quality monitors, our
results support our original hypothesis that it had a smaller impact on Eastern Sierra air quality
than the larger, more distant wildfires, which contributed the majority of the smoke. Key to that
apportionment was the hybrid remote sensing of fire detection, using a more temporally precise
diurnal allocation of emissions, combined with dispersion modeling. This allocation distinguished
between the confounding and persistent smoke impacts of the larger, more distant, and historically
large California wildfires during this intense smoke episode and the remaining smoke impacts from
the local wilderness wildfire, the Lions Fire. This study showcases an approach for better elucidating
the smoke-related consequences of wildfire management tactics and strategies as they evolve and
adjust dynamically across time and space, by modeling and apportioning individual smoke impacts.
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