

UC Davis Aviation Noise & Emissions Symposium: February 25, 2017 – Long Beach, CA

FLIGHTPLAN

ΤΟΡΙΟ	PRESENTER	TIME
Introduction/Ice Breaker	Steve & Greg	12:00
Evolution of Aviation Noise	Steve	12:15
Break		13:00
Science of Aviation Noise	Gregory	13:15
Quantifying Aviation Noise	Steve	13:45
Break		14:15
Regulating Aviation Noise	Steve	14:30
Mitigating Aviation Noise	Steve	15:00
Break		15:30
Aircraft Performance and Noise	Greg	15:45
Performance Based Navigation	Greg	16:15
Flight Procedure Design	Greg	16:35

-	ER KDFW
QNH	29.80 Hg
TEMP	73°F
DEWPOINT	64°F
WINDSPEED	18 kt
WINDDIR	170°
GUST	26 kt
VISIBILITY	6SM
CLOUDS	0VC020
METAR	200553Z 17018G26KT 10SM 0VC020 23/18 A2981 RMK A02 PK WND 15030/0524 SLP087 60000 T02280183 10261 20222 402610194 51004

WHAT IS SOUND?

(•) CASPER

Shared Insight

A mechanical wave that results from the back and forth vibration of the particles of the medium

through which the sound wave is moving

HOW DOES SOUND TRAVEL?

(•) CASPER

Shared Insight

Sound is transmitted through the air by the vibration of air molecules

HOW IS SOUND ENERGY MEASURED?

Rock Concert	dB 120	Sound Energy 1,000,000	Perceived Loudness 64x
Ambulance	110	100,000	32x
Fire Alarm	100	10,000	16x
Subway Train	90	1,000	8x
Urban Street	80	100	4x
Department Store	70	10	2x
Typical Conversation	60	1	1
Suburban Area	50	.1	1/2x
Rural Area	40	.01	1/4x
Whisper	30	.001	1/8x
Wilderness	20	.0001	1/16x
Breathing	10	.00001	1/32x
Threshold of Hearing	0	.000001	1/64x

WEATHER'S EFFECT ON SOUND TRASMISSION (•) CASPER

WHAT IS NOISE?

Noise – a sound, especially one that is loud or unpleasant or that causes disturbance. (unwanted sound)

AIRPORT NOISE SOURCES

(•) CASPER Shared Insight

Aircraft Departures

Aircraft Arrivals

Engine Run-Ups

Reverse Thrust

Running APU

Aircraft Idling / Taxiing

AIRCRAFT NOISE SOURCES

Engine Nacelle

Landing Gear

Fan Blades / Thrust Reversers /

Turbine / Fan Core /

Jet / Fan Exhaust

Slats /

Flaps

- Speed Brakes

....

Fuselage

Wingtip Vortices

APU

7

WHO REGULATES AIRPLANE NOISE IN THE UNITED STATES?

Federal Aviation Regulations Part 36 – Noise Standards: Aircraft Type and Airworthiness Certification

Subpart B – Transport Category Large Airplanes and Jet Airplanes

FAR 36.101 – Noise Measurement and Evaluation

FAR 36.103 – Noise Limits

HOW IS AIRCRAFT NOISE MEASURED?

(•) CASPER

Shared Insight

Aircraft Noise is measured in A weighted decibels (dBA)

HOW LOUD CAN A COMMERCIAL JET BE? (•) CASPER

FAR 36.103 – Noise Limits: A sliding scale based on aircraft weight (Stage IV)

BOEING

BOEING

Boeing 747-8I, Max Takeoff Weight = 987,000 lb.

Certification Level	Sideline	Approach	Takeoff
Noise Level (EPNdB)	94.0	100.9	94.5
Noise Limit (EPNdB)	103.0	105.0	106.0
Margin Below Stage IV	9.0	4.1	11.5

Boeing 787-8, Max Takeoff Weight = 502,500 lb.

Certification Level	Sideline	Approach	Takeoff
Noise Level (EPNdB)	91.6	94.2	86.6
Noise Limit (EPNdB)	100.9	104.3	98.0
Margin Below Stage IV	9.3	10.1	11.4

................

Boeing 737-8 MAX, Max Takeoff Weight = 181,200 lb.

Certification Level	Sideline	Approach	Takeoff
Noise Level (EPNdB)	88.5	94.2	82.6
Noise Limit (EPNdB)	97.2	100.9	92.1
Margin Below Stage IV	8.7	6.7	9.5

WHAT DOES A 10 DECIBEL INCREASE IN NOISE EQUATE TO?

10 dB increase = 10x sound energy but is only perceived to be 2x louder

HOW DOES THE FAA QUANTIFY AIRPLANE NOISE?

DNL – Day-night average sound level over a 24-hour period

DNL NIGHTTIME NOISE PENALTY

(•) CASPER

Shared Insight

Aircraft operations between the hours of 10 pm and 7 am have a 10 dB penalty added to them to account for the lower ambient noise levels in communities, which increases the likelihood of these events causing annoyance and sleep disturbance

WHY WAS 65 DNL CHOSEN AS THE THRESHOLD?

Federal Interagency Committee on Urban Noise (FICUN)

Guidelines for Considering Noise in Land Use Planning and Control (1980) <u>http://www.nonoise.org/epa/Roll7/roll7doc20.pdf</u>

This report established the Federal government's DNL 65 dB standard and related guidelines for land use compatibility

HOW DOES THE FAA DEFINE SIGNIFICANT NOISE?

According to the FAA noise levels of DNL 65 dB or above are generally considered incompatible with residential land uses and people living within the DNL 65 dB or higher contour are considered to be significantly impacted by aircraft noise.

EQUIVELANT DNL NOISE LEVELS

(•) CASPER

Shared Insight

10 Events/Day SEL 104.4 dBA = 65 DNL

100 Events/Day SEL 94.4 dBA = 65 DNL

HOW DOES NOISE GET INTO MY HOME?

AIRCRAFT PERFORMANCE AND NOISE (•) CASPER

AERODYNAMIC FORCES ACTING ON AN AIRPLANE

THE EVOLUTION OF THE COMMERCIAL JET ENGINE

787-8

AERODYNAMIC EVOLUTION OF THE BOEING 737 FAMILY

Boeing 737 Aerodynamic Efficiency Improvement

EVOLUTION OF THE NARROWBODY COMMERCIAL JET

FACTORS THAT EFFECT AIRCRAFT TAKEOFF PERFORMANCE

	Aircraft Weig	craft Weight Weather Conditions		Airport Elevation			Runway Length				
Plane	Payload	Fuel	Hotter Reduced Thrust	Engine Thrust	Colder Increased Thrust	Higher Less Dense Air	Lift Produced	Lower More Dense Air	Longer Higher Weight	Payload Uplift	Shorter Lower Weight

EXPLAINING THE VARIABILITY IN DEPARTURE PROFILES

Loguna QANTAS Spirit of Australia

SYD

.....

........

Los Angeles (LAX) to Sydney (SYD) Aircraft Assigned: Boeing 747-438 (VH-OJS) Flight Plan Distance: 7,560 miles

Spirit of Australia QANTAS

Los Angeles (LAX) to New York (JFK) Aircraft Assigned: Boeing 747-438 (VH-OJT) Flight Plan Distance: 2,536 miles

LAX

HOW MUCH DOES A BOEING 747 WEIGH? (•) CASPER

BOEING 747-400 (4x RB211-524H) WEIGHTS					
OPERATING EMPTY WEIGHT	394,088 lb. / 178,755 kg.				
MAX STRUCTURAL PAYLOAD	148,412 lb. / 67,319 kg.				
MAX ZERO FUEL WEIGHT	542,500 lb. / 246,074 kg.				
MAX USEABLE FUEL	382,336 lb. /173,425 kg.				
MAX TAXI WEIGHT	877,000 lb. / 397,801 kg.				
MAX TAKEOFF WEIGHT	875,000 lb. / 396,893 kg.				
MAX LANDING WEIGHT	630,000 lb. / 285,763 kg.				

HOW MUCH FUEL DO WE NEED FOR OUR TRIP?

(•) CASPER

FUEL LOAD PLANNING

(•) CASPER

HOW ARE PASSENGER AND CARGO WEIGHTS CALCULATED?

CARGO LOAD PLANNING

(•) CASPER

PASSENGER LOAD PLANNING

(•) CASPER

HOW MUCH RUNWAY DO WE NEED TO TAKEOFF?

CALCULATING TAKEOFF DISTANCE

Current Automatic Terminal Information Service (ATIS): Los Angeles Int'l Airport (LAX)

Temperature	Dew Point	Winds	Altimeter Setting	Field Elevation	Departing
59°F / 15°C	36°F / 2°C	Calm	29.92 in / 1030 mb.	128 ft. / 39 m.	Runway 25R

QFA11 LAX-JFK

Density Altitude = 251 ft. / 77 m.

Takeoff Weight = 568,968 lb. / 258,079 kg.

Flap Setting: 20°

Power Setting: 1.76 EPR (0% Derate)

Takeoff Runway = 25R (12,091 ft. / 3,685 m. available)

Takeoff Distance = 6,050 ft. / 1,844 m.

Takeoff Speeds = V1-126 kts. VR-126 kts. V2-146 kts.

QFA18 LAX-SYD

Density Altitude = 251 ft. / 77 m.

Takeoff Weight = 870,518 lb. / 394,860 kg.

Flap Setting: 20°

Power Setting: 1.76 EPR (0% Derate)

Takeoff Runway = 25R (12,091 ft. / 3,685 m. available)

(•) CASPER

Takeoff Distance = 10,323 ft. / 3,146 m.

Takeoff Speeds = V1-153 kts. VR-168 kts. V2-180 kts.

TEMPERATURE AND PERFORMANCE

The volume of air ingested into a jet engine is fixed, but the density of that same air is not.

Shared Insight

Temperature has an inverse correlation with Air Density

Hot air is less dense than cold air and thus the warmer the temperature the less net thrust a jet engine produces. Warmer temperatures also decrease lift, which increases the length of runway needed for takeoff, reduces climb performance and lessens the payload weight that can be lifted.

TEMPERATURE'S EFFECT ON TAKEOFF PERFORMANCE

Current Automatic Terminal Information Service (ATIS): Los Angeles Int'l Airport (LAX)

Temperature 59°F / 35°C

Dew Point 36°F / 2°C Calm

Winds

Altimeter Setting 29.92 in / 1030 mb. 128 ft. / 39 m. Runway 25R

Departing

QFA11 LAX-JFK

Density Altitude = 25211 ft. 776 m.

Takeoff Weight = 568,968 lb. / 258,079 kg.

Flap Setting: 20°

Power Setting: 1.76 EPR (0% Derate)

Takeoff Runway = 25R (12,091 ft. / 3,685 m. available)

Takeoff Distance = 6,050 ft. / 1,844 m.

Takeoff Speeds = V1-126 kts. VR-126 kts. V2-146 kts.

Takeoff Length Difference = 0 ft. / 0 m.

QFA18 LAX-SYD

Density Altitude = 25211 ft. f'. 776 m. Takeoff Weight = 870,518 lb. / 394,860 kg. Flap Setting: 20° Power Setting: 1.75 EPR (0% Derate) Takeoff Runway = 25R(12,091 ft. / 3,685 m. available)Takeoff Distance = 10,802 ft. / 3,290 m. Takeoff Speeds = V1-153 kts. VR-168 kts. V2-180 kts. Takeoff Length Difference = 0.79 ft $0/r_{0.46}$ m.

Field Elevation

WHY DO AIRPLANES TAKEOFF AND LAND INTO THE WIND?

A headwind equals airspeed over the wings which increases lift

Airplanes takeoff and land into the wind to increase lift and reduce the amount of runway needed for takeoff and landing. An aircraft sitting at the end of the runway pointed into a 15 knot headwind has ground speed of 0 and an airspeed of 15 knots.

WIND'S EFFECT ON TAKEOFF PERFORMANCE (•) CASPER

Current Automatic Terminal Information Service (ATIS): Los Angeles Int'l Airport (LAX)

TemperatureDew PointWindsAltimeter SettingField ElevationDeparting59°F / 15°C36°F / 2°CQābħ/1529.92 in / 1030 mb.128 ft. / 39 m.Runway 25R

QFA11 LAX-JFK

Density Altitude = 251 ft. / 77 m.

Takeoff Weight = 568,968 lb. / 258,079 kg.

Flap Setting: 20°

Power Setting: 1.76 EPR (0% Derate)

Takeoff Runway = 25R (12,091 ft. / 3,685 m. available)

Takeoff Distance = **6,000** ft. / **1,807** m.

Takeoff Speeds = V1-126 kts. VR-126 kts. V2-146 kts.

Takeoff Length Difference = 04449/f0 /m.137 m.

QFA18 LAX-SYD

Density Altitude = 251 ft. / 77 m. Takeoff Weight = 870,518 lb. / 394,860 kg. Flap Setting: 20° Power Setting: 1.76 EPR (0% Derate) Takeoff Runway = 25R (12,091 ft. / 3,685 m. available) Takeoff Distance = 906383 ftt/ /2,39496m. Takeoff Speeds = V1-153 kts. VR-168 kts. V2-180 kts. Takeoff Length Difference = 0647/10 /n.197 m.

ALTITUDE AND TAKEOFF PERFORMANCE

Temperature = 59°F / 15°C Dew Point = 36°F / 2°C Altimeter = 29.92 Hg. Winds = Calm

LAX Field Elevation = 128 ft. / 39 m.

DEN Field Elevation = 5,434 ft. / 1,656 m.

Altitude has an inverse correlation with air density

At higher altitudes the air is less dense, decreasing the lifting effectiveness of the wing. Altitude also effects engine performance, reducing the net thrust output from a jet engine. Both of these factors combined increase the amount of runway needed for takeoff, negatively impact aircraft climb performance and restrict the payload weight that can be lifted.

ALTITUDE'S EFFECT ON TAKEOFF PERFORMANCE

Current Automatic Terminal Information Service (ATIS): Los Angeles Int'l Airport (LAX)

Temperature 59°F / 15°C

Dew Point 36°F / 2°C Calm

Winds

Altimeter Setting

Departing 29.92 in / 1030 mb. **\$28**ft.ft/.391n656 m. Runway 25R

QFA11 LAX-JFK

Density Altitude = **0**579ft.ft/.772r069 m.

Takeoff Weight = 568,968 lb. / 258,079 kg.

Flap Setting: 20°

Power Setting: 1.70 EPR (0% Derate)

Takeoff Runway = 25R (12,091 ft. / 3,685 m. available)

Takeoff Distance = 6,050 ft. / 1,844 m.

Takeoff Speeds = V1-128 kts. VR-128 kts. V2-146 kts.

Takeoff Length Difference = 0 ft. / 0 m.

QFA18 LAX-SYD

Density Altitude = 0579 ft.ft/.772, 069 m. Takeoff Weight = 870,518 lb. / 394,860 kg. Flap Setting: 20° Power Setting: 1.79 EPR (0% Derate) Takeoff Runway = 25R (12,091 ft. / 3,685 m. available)Takeoff Distance = 10,303 ft. / 4,786 m. Takeoff Speeds = V1-158 kts. VR-168 kts. V2-180 kts. Takeoff Length Difference = θ , θ 78 θ m/.1,639 m.

Field Elevation

WEIGHT RESTRICTION DUE TO RUNWAY LENGTH

AVAILABLE RUNWAY LENGTH'S EFFECT ON AIRCRAFT WEIGHT

Current Automatic Terminal Information Service (ATIS): Los Angeles Int'l Airport (LAX)

TemperatureDew PointWindsAltimeter SettingField ElevationDeparting59°F / 15°C36°F / 2°CCalm29.92 in / 1030 mb.128 ft. / 39 m.Runway 25R

QFA11 LAX-JFK

Density Altitude = 251 ft. / 77 m.

Takeoff Weight = 568,968 lb. / 258,079 kg.

Flap Setting: 20°

Power Setting: 1.76 EPR (0% Derate)

Takeoff Runway = 24B (9,2,395 ftft/ \$,3,585 mavzaitailallel)e)

Takeoff Distance = 6,050 ft. / 1,844 m.

Takeoff Speeds = V1-126 kts. VR-126 kts. V2-146 kts.

Takeoff Weight Difference = 0 lb. / 0 kg.

QFA18 LAX-SYD

Density Altitude = 251 ft. / 77 m.

Takeoff Weight = 820,200 lb. / 393,800 kg. (0 Bags/Cargo and -74 Passengers)

Flap Setting: 20°

Power Setting: 1.76 EPR (0% Derate)

Takeoff Runway = 28 R (9,2,39 ftft/ \$,3),58 5 mavai tailallele)

Takeoff Distance = 90,63 ft. / 23,936m.

Takeoff Speeds = V1-198 kts. VR-168 kts. V2-180 kts.

Takeoff Weight Difference = 0410,3/10 kg. / -21,463 kg.

QFA11 LOS ANGELES INT'L (LAX) LOOP.8 DEPARTURE SID

PACIFIC O

 \ldots . on (assigned transition) or (assigned route). All aircraft expect further clearance to filed flight level three minutes after departure.

DAGGETT TRANSITION (LOOP8.DAG): From over LAX VORTAC on LAX R-041 to COOPP, then on LAX R-041 and DAG R-222 to DAG VORTAC.

LOST COMMUNICATIONS: If not in contact with Departure Control by 15 DME west of LAX VORTAC, turn left and proceed direct LAX VORTAC, climb to FL230 or filed altitude whichever is lower, and when able proceed on filed or assigned route/fix/transition. Aircraft filing FL240 or above climb to filed altitude ten minutes after departure.

LOOP EIGHT DEPARTURE (LOOP8.LAX) 04FEB16 LOS ANGELES, CALIFORNIA LOS ANGELES INTL (LAX)

QFA18 LOS ANGELES (LAX) PERCH.1 DEPARTURE SID

PERFORMANCE BASED NAVIGATION (•) CASPER

WHAT IS A METROPLEX?

METROPLEX

Geographic area that includes several commercial and general aviation airports in close proximity serving large metropolitan areas.

The FAA has identified **21** metroplex areas where airspace congestion and other limiting factors such as environmental constraints combine to create bottlenecks that effect system efficiency nation wide.

(•) CASPER

Shared Insight

WHAT IS OAPM?

(•) CASPER Shared Insight

Optimization of Airspace & Procedures in the Metroplex

Optimization of the airspace and procedures encompassing multiple airports in a metroplex region provides for the most efficient traffic management solutions on both a regional and national basis.

By examining airspace problems on a regional scale the FAA can customize the solutions to ensure they maximize throughput of airplanes through the entire airspace in the safest and most efficient manner possible while at the same time customizing procedures to meet the unique requirements of individual airports.

WHAT IS PBN?

Performance Based Navigation

A transformational change from conventional ground-based navigation aids and procedures to satellite-based navigation aids and area navigation procedures, which are more accurate and allow for shorter, more direct routes between two given points as well as more efficient takeoffs and landings.

PBN enables aircraft to fly on any desired flight path within the coverage of ground or satellite based navigation aids using the aircraft's capability to navigate by means of performance standards utilizing either Area Navigation (RNAV) or Required Navigation Performance (RNP).

WAYPOINT TYPES

Fly-By Waypoint

Fly-Over Waypoint

(•) CASPER

Shared Insight

The aircraft navigation system will anticipate the turn and calculate the radius of the turn to intercept the next waypoint. Much less flight path predictability caused by overflying the waypoint and having to turn back to recapture the track to the next waypoint.

Differences in airspeed and aircraft mass result in a wide track dispersion during the turn.

WHAT IS RNAV?

Area Navigation

Developed in the 1960s, with the first routes being published and flown in the 1970s.

This method of instrument flight rules (IFR) navigation allows an aircraft to choose any course within a network of navigation beacons, rather than navigate directly to and from the beacons.

RNAV requires an aircraft to be equipped with a GPS navigation system like a Flight Management System (FMS) which uses the GPS to triangulate the aircraft's position to within a circle with a defined radius.

RNAV is primarily used for departure procedures and/or arrival procedures that do not require the narrow tolerances defined by RNP procedures.

RNAV 1 – implies you have a 95% probability of keeping within 1 nm of your track course

FLYING AN RNAV DEPARTURE

WHAT IS RNP?

Required Navigation Performance

Developed in the early 1990s, with the first route being published and flown in 1996 by Alaska Airlines at Juneau, Alaska.

This method of instrument flight rules (IFR) navigation is fundamentally similar to RNAV with the difference being that RNP incorporates onboard performance monitoring and alerting.

The Flight Management System (FMS) uses position data from two independent GPS receivers as well as inertial navigation data to crosscheck and monitor the position of the aircraft. The system reports to the pilots if the position accuracy falls outside the tolerances for the given procedure.

RNP is primarily used for approaches into airports surrounded by mountainous terrain and/or other obstacles.

RNP 0.1 – implies you have a 95% probability of keeping within 0.1 nm of your track course RNP 0.2 – implies you have a 95% probability of keeping within 0.2 nm of your track course RNP 0.3 – implies you have a 95% probability of keeping within 0.3 nm of your track course

RNP 0.1 - Alert if the probability of keeping within 0.2 nm of the course centerline is less than 99.999%

) CASPER Shared Insight

FLYING AN RNP APPROACH

WHAT IS A SID?

(•) CASPER Shared Insight

Standard Instrument Departure

An IFR air traffic control departure procedure that utilizes a series of specific waypoints, headings and altitudes to organize traffic departing the airport and place aircraft on a fixed route with defined transition points exiting the airspace.

SIDs are optimized for air traffic control routing efficiency while striking a balance between terrain and obstacle avoidance, noise abatement and airspace management.

A specific SID is assigned to an IFR flight by ATC based on a combination of the aircraft's destination, the first waypoint in the flight plan and the takeoff runway assigned.

Phoenix Sky Harbor Int'l KPHX - YOTES.3 SID Illustrated

PHOENIX SKY HARBOR INT'L (PHX) YOTES.3 DEP. RNAV SID (•) CASPER

WHAT IS A STAR?

(•) CASPER Shared Insight

Standard Terminal Arrival Route

An IFR air traffic control arrival procedure that utilizes a series of specific waypoints, headings and altitudes to organize traffic arriving to the airport by placing airplanes on fixed routes with defined transition points entering the airspace.

STARs cover the portion of the flight between the top of descent and the initial approach fix to the runway.

The STAR simplifies ATC clearance procedures and allows for a smooth transition of aircraft between en-route and approach controllers. Assignment of STARs by ATC is dictated by many factors including the weather conditions, runway/approach in use as well as airport congestion.

San Francisco Int'l KSFO - WWAVS.1 STAR Illustrated

SAN FRANCISCO INT'L (SFO) WWAVS.1 ARR. RNAV STAR (•) CASPER

WHAT'S THE DIFFERENCE BETWEEN AN ARRIVAL AND AN APPROACH?

SAN FRANCISCO, CALIFORNIA

APP CRS

194°

Rwy Idg TDZE

Apt Elev

8650

11

13

WAAS

CH 58015

W19A

Arrival

An arrival procedure covers the portion of the flight from the top of descent point in cruise flight down to a position just short of the initial fix on a specific approach.

Arrivals don't end at a runway end, but rather usually terminate near the initial fix for a specific approach.

Approach

An approach procedure cover the portion of the flight from the initial approach fix down to the runway.

15176

RNAV (GPS) RWY 19L

SAN FRANCISCO INTL (SFO)

ATC sequences airplanes onto an approach to a specific runway at set intervals. The approach procedure guides the aircraft down to the runway.

AL-375 (FAA)

REAL WORLD EXAMPLE AAL530 (SEA-PHL) (•) CASPER

Gate D9

American Airlines

Philadelphia, PA

Flight AA 530

Departs 10:25pm Status On Time

Arrives 6:23am EDT

Boarding in 20 minutes

AAdvantage
Miles: 2,375 • Flight Time: 4 hr 42 min • Aircraft Type: Airbus A321T

AAL530 FLIGHT DETAILS

AIRBUS A321-231T (Transcon) Aircraft: N102NN Filed: FL330 ETE: 4 hr 42 min

American

SEATTLE-TACOMA (SEA) SUMMA.8 DEP. SID

AAL530 ENROUTE FLIGHTPATH

(•) CASPER

PHILADELPHIA INT'L (PHL) BOJID.1 RNAV ARR. STAR

FLIGHT PROCEDURE DESIGN

(•) CASPER

Shared Insight

PRIMARY DESIGN CONSIDERATIONS (•) CASPER

SAFETY OF FLIGHT

- Terrain Clearance
- Obstacle Clearance
- Aircraft Performance Limitations
- Traffic Separation
- Traffic Deconfliction

AIRSPACE EFFICIENCY

- Increase System Throughput
- Increase Predictability of Operations
- Reduce Required Aircraft Spacing
- Reduce Track Miles Flown
- Reduce Radio Communications

TERRAIN AND OBSTACLE CLEARANCE (•) CASPER

Maintain Separation

- Minimum Climb Gradient
- Maximum Descent Gradient
- Altitude Crossing Limits
- Minimum Turn Radius
- Airspeed Restrictions
- Navigation Error Tolerance
- Aircraft Restrictions

AIRCRAFT PERFORMANCE LIMITATIONS

Vertical Profile – Climb Gradient

Minimum climb gradients are predicated on the worst case scenario:

Losing an engine on takeoff with the aircraft at maximum takeoff weight on a very hot day.

The vertical profile must allow all aircraft to clear all obstacles safely with one engine inoperative.

¹ nm = 6,076 ft.

AIRCRAFT PERFORMANCE LIMITATIONS

Max Takeoff Weight = 987,000 lb. / 447,696 kg.

Max Takeoff Weight = 502,500 lb. / 227,930 kg.

Max Takeoff Weight = 181,200 lb. / 82,191 kg.

Max Takeoff Weight = 64,500 lb. / 29,257 kg.

Lateral Profile – Turn Radius

Airspeed, Wing Loading and Mass determine the turn radius of a particular aircraft.

> Aircraft with a smaller mass flying at a lower airspeed can turn within a tighter radius.

Bombardier Q400

Cruise Speed = 414 mph Approach Speed = 145 mph Max Takeoff Weight = 64,500 lb.

www.Q400.com

Cessna 172 Cruise Speed = 140 mph Approach Speed = 75 mph Max Takeoff Weight = 2,550 lb.

Q400

TRAFFIC SEPARATION / DECONFLICTION

(•) CASPER Shared Insight

Source: Est/ Digital Globe, GeoBye, Earthster Geographics, CNES/Alfous/DS, USDA, USGS, AEX, Germanolog, Aerographics, IGP, swisstopo, and the GIS User Community

INCREASE THROUGHPUT / PREDICTABILITY (•) CASPER

REDUCE REQUIRED AIRCRAFT SPACING

REDUCE TRACK MILES FLOWN

ACKNOWLEDGEMENTS

A special thank you to Dan Yeung and Kathryn Pantoja of LAWA's Environmental Department for providing the LAX flight track data used as the basis for the comparative analysis of Qantas flights.

The following programs and sources were used to create this presentation.

Casper Noise Adobe Photoshop CC 2016

AirNav.com (airnav.com)

Boeing 747-400 Airplane Characteristics for Airport Planning (boeing.com/commercial/airports/plan_manuals.page)

Esri ArcGIS ArcMap v10.3.1

Federal Aviation Administration (faa.gov)

International Civil Aviation Organization (icao.int)

Lockheed Martin Prepar3D v4.2 (prepar3d.com)

Microsoft Excel 2016

Microsoft PowerPoint 2016

Navigraph FMS Data AIRAC Cycle 1802 (navigraph.com)

Plane Simple Truth – Clearing the Air on Aviation's Environmental Impact (2008)

Precision Manuals Development Group Boeing 747-400 Simulation (precisionmanuals.com)

Professional Flight Planner X (flightsimsoft.com/pfpx)

Take-Off and Landing Performance Calculation Tool (flightsimsoft.com/topcat)

QUESTIONS?